Results 1  10
of
3,138,087
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 543 (12 self)
 Add to MetaCart
to SDP. Next we present an interior point algorithm which converges to the optimal solution in polynomial time. The approach is a direct extension of Ye's projective method for linear programming. We also argue that most known interior point methods for linear programs can be transformed in a
Iterative point matching for registration of freeform curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract

Cited by 655 (8 self)
 Add to MetaCart
, in many practical applications, some a priori knowledge exists which considerably simplifies the problem. In visual navigation, for example, the motion between successive positions is usually approximately known. From this initial estimate, our algorithm computes observer motion with very good precision
A Critical Point For Random Graphs With A Given Degree Sequence
, 2000
"... Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 the ..."
Abstract

Cited by 497 (8 self)
 Add to MetaCart
then almost surely all components in such graphs are small. We can apply these results to G n;p ; G n;M , and other wellknown models of random graphs. There are also applications related to the chromatic number of sparse random graphs.
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract

Cited by 715 (1 self)
 Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision
Distance Metric Learning, With Application To Clustering With SideInformation
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15
, 2003
"... Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the us ..."
Abstract

Cited by 801 (13 self)
 Add to MetaCart
be for the user to manually tweak the metric until sufficiently good clusters are found. For these and other applications requiring good metrics, it is desirable that we provide a more systematic way for users to indicate what they consider "similar." For instance, we may ask them to provide
Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics
, 1996
"... For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has ..."
Abstract

Cited by 536 (13 self)
 Add to MetaCart
For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain
The Stable Model Semantics For Logic Programming
, 1988
"... We propose a new declarative semantics for logic programs with negation. Its formulation is quite simple; at the same time, it is more general than the iterated fixed point semantics for stratied programs, and is applicable to some useful programs that are not stratified. ..."
Abstract

Cited by 1816 (62 self)
 Add to MetaCart
We propose a new declarative semantics for logic programs with negation. Its formulation is quite simple; at the same time, it is more general than the iterated fixed point semantics for stratied programs, and is applicable to some useful programs that are not stratified.
GPSless Low Cost Outdoor Localization For Very Small Devices
"... Instrumenting the physical world through large networks of wireless sensor nodes, particularly for applications like environmental monitoring of water and soil, requires that these nodes be very small, light, untethered and unobtrusive. The problem of localization, i.e., determining where a given n ..."
Abstract

Cited by 984 (27 self)
 Add to MetaCart
Instrumenting the physical world through large networks of wireless sensor nodes, particularly for applications like environmental monitoring of water and soil, requires that these nodes be very small, light, untethered and unobtrusive. The problem of localization, i.e., determining where a given
A Survey on Sensor Networks
, 2002
"... Recent advancement in wireless communica tions and electronics has enabled the develop ment of lowcost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues that research ..."
Abstract

Cited by 1908 (1 self)
 Add to MetaCart
Recent advancement in wireless communica tions and electronics has enabled the develop ment of lowcost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues
Mean shift, mode seeking, and clustering
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1995
"... Mean shift, a simple iterative procedure that shifts each data point to the average of data points in its neighborhood, is generalized and analyzed in this paper. This generalization makes some kmeans like clustering algorithms its special cases. It is shown that mean shift is a modeseeking proce ..."
Abstract

Cited by 621 (0 self)
 Add to MetaCart
seeking process on a surface constructed with a “shadow ” kernel. For Gaussian kernels, mean shift is a gradient mapping. Convergence is studied for mean shift iterations. Cluster analysis is treated as a deterministic problem of finding a fixed point of mean shift that characterizes the data. Applications
Results 1  10
of
3,138,087