Results 1  10
of
53,793
Maximum likelihood from incomplete data via the EM algorithm
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract

Cited by 11972 (17 self)
 Add to MetaCart
situations, applications to grouped, censored or truncated data, finite mixture models, variance component estimation, hyperparameter estimation, iteratively reweighted least squares and factor analysis.
Survey on Independent Component Analysis
 NEURAL COMPUTING SURVEYS
, 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 2309 (104 self)
 Add to MetaCart
the statistical dependence of the components of the representation. Such a representation seems to capture the essential structure of the data in many applications. In this paper, we survey the existing theory and methods for ICA.
Robust principal component analysis?
 Journal of the ACM,
, 2011
"... Abstract This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the ..."
Abstract

Cited by 569 (26 self)
 Add to MetaCart
Abstract This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low
PVM: A Framework for Parallel Distributed Computing
 Concurrency: Practice and Experience
, 1990
"... The PVM system is a programming environment for the development and execution of large concurrent or parallel applications that consist of many interacting, but relatively independent, components. It is intended to operate on a collection of heterogeneous computing elements interconnected by one or ..."
Abstract

Cited by 788 (27 self)
 Add to MetaCart
The PVM system is a programming environment for the development and execution of large concurrent or parallel applications that consist of many interacting, but relatively independent, components. It is intended to operate on a collection of heterogeneous computing elements interconnected by one
Tensor Decompositions and Applications
 SIAM REVIEW
, 2009
"... This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal proce ..."
Abstract

Cited by 723 (18 self)
 Add to MetaCart
This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal
Estimation of probabilities from sparse data for the language model component of a speech recognizer
 IEEE Transactions on Acoustics, Speech and Signal Processing
, 1987
"... AbstractThe description of a novel type of rngram language model is given. The model offers, via a nonlinear recursive procedure, a computation and space efficient solution to the problem of estimating probabilities from sparse data. This solution compares favorably to other proposed methods. Wh ..."
Abstract

Cited by 799 (2 self)
 Add to MetaCart
. While the method has been developed for and successfully implemented in the IBM Real Time Speech Recognizers, its generality makes it applicable in other areas where the problem of estimating probabilities from sparse data arises. Sparseness of data is an inherent property of any real text
Face description with local binary patterns: Application to face recognition
 IEEE Trans. Pattern Analysis and Machine Intelligence
, 2006
"... Abstract—This paper presents a novel and efficient facial image representation based on local binary pattern (LBP) texture features. The face image is divided into several regions from which the LBP feature distributions are extracted and concatenated into an enhanced feature vector to be used as a ..."
Abstract

Cited by 526 (27 self)
 Add to MetaCart
face descriptor. The performance of the proposed method is assessed in the face recognition problem under different challenges. Other applications and several extensions are also discussed. Index Terms—Facial image representation, local binary pattern, componentbased face recognition, texture features
A quantitative description of membrane currents and its application to conduction and excitation in nerve
 Journal of Physiology
, 1952
"... This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre (Hodgkin, Huxley & Katz, 1952; Hodgkin & Huxley, 1952 ac). Its general object is to discu the results of the preceding papers (Part I), to put them into ..."
Abstract

Cited by 1924 (2 self)
 Add to MetaCart
in Fig. 1. Current can be carried through the membrane either by charging the membrane capacity or by movement of ions through the resistances in parallel with the capacity. The ionic current is divided into components carried by sodium and potassium ions (INa and IK), and a small 'leakage current
A Critical Point For Random Graphs With A Given Degree Sequence
, 2000
"... Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 the ..."
Abstract

Cited by 507 (8 self)
 Add to MetaCart
then almost surely all components in such graphs are small. We can apply these results to G n;p ; G n;M , and other wellknown models of random graphs. There are also applications related to the chromatic number of sparse random graphs.
Results 1  10
of
53,793