Results 1  10
of
3,312,196
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
Termweighting approaches in automatic text retrieval
 INFORMATION PROCESSING AND MANAGEMENT
, 1988
"... The experimental evidence accumulated over the past 20 years indicates that text indexing systems based on the assignment of appropriately weighted single terms produce retrieval results that are superior to those obtainable with other more elaborate text representations. These results depend crucia ..."
Abstract

Cited by 2159 (10 self)
 Add to MetaCart
The experimental evidence accumulated over the past 20 years indicates that text indexing systems based on the assignment of appropriately weighted single terms produce retrieval results that are superior to those obtainable with other more elaborate text representations. These results depend
Partial Functions
"... this article we prove some auxiliary theorems and schemes related to the articles: [1] and [2]. MML Identifier: PARTFUN1. WWW: http://mizar.org/JFM/Vol1/partfun1.html The articles [4], [6], [3], [5], [7], [8], and [1] provide the notation and terminology for this paper. We adopt the following rules ..."
Abstract

Cited by 494 (10 self)
 Add to MetaCart
rules: x, y, y 1 , y 2 , z, z 1 , z 2 denote sets, P , Q, X , X 0 , X 1 , X 2 , Y , Y 0 , Y 1 , Y 2 , V , Z denote sets, and C, D denote non empty sets. We now state three propositions: (1) If P ` [: X 1
Inducing Features of Random Fields
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1997
"... We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing the ..."
Abstract

Cited by 664 (14 self)
 Add to MetaCart
We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a
Books in graphs
, 2008
"... A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α) ..."
Abstract

Cited by 2380 (22 self)
 Add to MetaCart
A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α
The Askeyscheme of hypergeometric orthogonal polynomials and its qanalogue
, 1998
"... We list the socalled Askeyscheme of hypergeometric orthogonal polynomials and we give a q analogue of this scheme containing basic hypergeometric orthogonal polynomials. In chapter 1 we give the definition, the orthogonality relation, the three term recurrence relation, the second order di#erent ..."
Abstract

Cited by 580 (6 self)
 Add to MetaCart
We list the socalled Askeyscheme of hypergeometric orthogonal polynomials and we give a q analogue of this scheme containing basic hypergeometric orthogonal polynomials. In chapter 1 we give the definition, the orthogonality relation, the three term recurrence relation, the second order di
Inflation Forecast Targeting: Implementing and Monitoring Inflation Targets
, 1996
"... Inflation targeting is shown to imply inflation forecast targeting: the central bank's inflation forecast becomes an explicit intermediate target. Inflation forecast targeting simplifies both implementation and monitoring of monetary policy. The weight on output stabilization determines how qui ..."
Abstract

Cited by 668 (48 self)
 Add to MetaCart
Inflation targeting is shown to imply inflation forecast targeting: the central bank's inflation forecast becomes an explicit intermediate target. Inflation forecast targeting simplifies both implementation and monitoring of monetary policy. The weight on output stabilization determines how
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We
Okapi at TREC3
, 1996
"... this document length correction factor is #global": it is added at the end, after the weights for the individual terms have been summed, and is independentofwhich terms match. ..."
Abstract

Cited by 593 (5 self)
 Add to MetaCart
this document length correction factor is #global": it is added at the end, after the weights for the individual terms have been summed, and is independentofwhich terms match.
Results 1  10
of
3,312,196