Results 1  10
of
372,218
Submitted to the Annals of Applied Probability VIRAL PROCESSES BY RANDOM WALKS ON RANDOM REGULAR GRAPHS
"... We study the SIR epidemic model with infections carried by k particles making independent random walks on a random regular graph. Here we assume k ≤ n, where n is the number of vertices in the random graph and is some sufficiently small constant. We give an edgeweighted graph reduction of the dyna ..."
Abstract
 Add to MetaCart
We study the SIR epidemic model with infections carried by k particles making independent random walks on a random regular graph. Here we assume k ≤ n, where n is the number of vertices in the random graph and is some sufficiently small constant. We give an edgeweighted graph reduction
Random walks for image segmentation
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2006
"... Abstract—A novel method is proposed for performing multilabel, interactive image segmentation. Given a small number of pixels with userdefined (or predefined) labels, one can analytically and quickly determine the probability that a random walker starting at each unlabeled pixel will first reach on ..."
Abstract

Cited by 385 (21 self)
 Add to MetaCart
segmentation, graph theory, random walks, combinatorial Dirichlet problem, harmonic functions, Laplace equation, graph cuts, boundary completion. Ç 1
Randomized Algorithms
, 1995
"... Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available, or the simp ..."
Abstract

Cited by 2210 (37 self)
 Add to MetaCart
Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available
A Critical Point For Random Graphs With A Given Degree Sequence
, 2000
"... Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 the ..."
Abstract

Cited by 511 (8 self)
 Add to MetaCart
Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0
Inducing Features of Random Fields
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1997
"... We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing the ..."
Abstract

Cited by 664 (14 self)
 Add to MetaCart
We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Random key predistribution schemes for sensor networks
 IN PROCEEDINGS OF THE 2003 IEEE SYMPOSIUM ON SECURITY AND PRIVACY
, 2003
"... Key establishment in sensor networks is a challenging problem because asymmetric key cryptosystems are unsuitable for use in resource constrained sensor nodes, and also because the nodes could be physically compromised by an adversary. We present three new mechanisms for key establishment using the ..."
Abstract

Cited by 813 (14 self)
 Add to MetaCart
the framework of predistributing a random set of keys to each node. First, in the qcomposite keys scheme, we trade off the unlikeliness of a largescale network attack in order to significantly strengthen random key predistribution’s strength against smallerscale attacks. Second, in the multipath
Results 1  10
of
372,218