Results 1  10
of
43,927
Quantization Index Modulation: A Class of Provably Good Methods for Digital Watermarking and Information Embedding
 IEEE TRANS. ON INFORMATION THEORY
, 1999
"... We consider the problem of embedding one signal (e.g., a digital watermark), within another "host" signal to form a third, "composite" signal. The embedding is designed to achieve efficient tradeoffs among the three conflicting goals of maximizing informationembedding rate, mini ..."
Abstract

Cited by 495 (15 self)
 Add to MetaCart
, minimizing distortion between the host signal and composite signal, and maximizing the robustness of the embedding. We introduce new classes of embedding methods, termed quantization index modulation (QIM) and distortioncompensated QIM (DCQIM), and develop convenient realizations in the form of what we
Quantum Gravity
, 2004
"... We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theor ..."
Abstract

Cited by 566 (11 self)
 Add to MetaCart
integral quantizations, coupling to matter, extensions to supergravity and higher dimensional theories, as well as applications to black holes, cosmology and Plank scale phenomenology. We describe the near term prospects for observational tests of quantum theories of gravity and the expectations that loop
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
, planning under uncertainty, sensorbased planning, visibility, decisiontheoretic planning, game theory, information spaces, reinforcement learning, nonlinear systems, trajectory planning, nonholonomic planning, and kinodynamic planning.
Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection
, 1997
"... We develop a face recognition algorithm which is insensitive to gross variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a highdimensional space. We take advantage of the observation that the images ..."
Abstract

Cited by 2263 (18 self)
 Add to MetaCart
of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space  if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce selfshadowing, images will deviate
Cognitive Radio: BrainEmpowered Wireless Communications
, 2005
"... Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a softwaredefined radio, is defined as an intelligent wireless communication system that is aware of its environment and use ..."
Abstract

Cited by 1479 (4 self)
 Add to MetaCart
Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a softwaredefined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understandingbybuilding to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: • highly reliable communication whenever and wherever needed; • efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radioscene analysis. 2) Channelstate estimation and predictive modeling. 3) Transmitpower control and dynamic spectrum management. This paper also discusses the emergent behavior of cognitive radio.
Wireless Communications
, 2005
"... Copyright c ○ 2005 by Cambridge University Press. This material is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University ..."
Abstract

Cited by 1129 (32 self)
 Add to MetaCart
Copyright c ○ 2005 by Cambridge University Press. This material is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University
The large N limit of superconformal field theories and supergravity
, 1998
"... We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of AntideSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and ..."
Abstract

Cited by 5673 (21 self)
 Add to MetaCart
We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of AntideSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large N. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the superPoincare group). The ’t Hooft limit of 3+1 N = 4 superYangMills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various AntideSitter spacetimes is dual to various conformal field theories. This leads to a new proposal for a definition of Mtheory which could be extended to include five or four noncompact dimensions. 1
ChernSimons Gauge Theory as a String Theory
, 2003
"... Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given spacetime interpretations. For instance, threedimensional ChernSimons gaug ..."
Abstract

Cited by 551 (14 self)
 Add to MetaCart
Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given spacetime interpretations. For instance, threedimensional ChernSimons gauge theory can arise as a string theory. The worldsheet model in this case involves a topological sigma model. Instanton contributions to the sigma model give rise to Wilson line insertions in the spacetime ChernSimons theory. A certain holomorphic analog of ChernSimons theory can also arise as a string theory.
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particular realization of the N = 2 theories, the resulting string field theory is equivalent to a topological theory in six dimensions, the Kodaira– Spencer theory, which may be viewed as the closed string analog of the Chern–Simon theory. Using the mirror map this leads to computation of the ‘number ’ of holomorphic curves of higher genus curves in Calabi–Yau manifolds. It is shown that topological amplitudes can also be reinterpreted as computing corrections to superpotential terms appearing in the effective 4d theory resulting from compactification of standard 10d superstrings on the corresponding N = 2 theory. Relations with c = 1 strings are also pointed out.
Results 1  10
of
43,927