Results 1  10
of
423,163
On Spectral Clustering: Analysis and an algorithm
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2001
"... Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly ..."
Abstract

Cited by 1697 (13 self)
 Add to MetaCart
Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors
A Simple Estimator of Cointegrating Vectors in Higher Order Cointegrated Systems
 ECONOMETRICA
, 1993
"... Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions. T ..."
Abstract

Cited by 507 (3 self)
 Add to MetaCart
Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions
Hierarchically Classifying Documents Using Very Few Words
, 1997
"... The proliferation of topic hierarchies for text documents has resulted in a need for tools that automatically classify new documents within such hierarchies. Existing classification schemes which ignore the hierarchical structure and treat the topics as separate classes are often inadequate in text ..."
Abstract

Cited by 521 (8 self)
 Add to MetaCart
The proliferation of topic hierarchies for text documents has resulted in a need for tools that automatically classify new documents within such hierarchies. Existing classification schemes which ignore the hierarchical structure and treat the topics as separate classes are often inadequate in text
Automatic Word Sense Discrimination
 Journal of Computational Linguistics
, 1998
"... This paper presents contextgroup discrimination, a disambiguation algorithm based on clustering. Senses are interpreted as groups (or clusters) of similar contexts of the ambiguous word. Words, contexts, and senses are represented in Word Space, a highdimensional, realvalued space in which closen ..."
Abstract

Cited by 530 (1 self)
 Add to MetaCart
This paper presents contextgroup discrimination, a disambiguation algorithm based on clustering. Senses are interpreted as groups (or clusters) of similar contexts of the ambiguous word. Words, contexts, and senses are represented in Word Space, a highdimensional, realvalued space in which
Transductive Inference for Text Classification using Support Vector Machines
, 1999
"... This paper introduces Transductive Support Vector Machines (TSVMs) for text classification. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try to minimiz ..."
Abstract

Cited by 887 (4 self)
 Add to MetaCart
This paper introduces Transductive Support Vector Machines (TSVMs) for text classification. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 557 (28 self)
 Add to MetaCart
for modelbased clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster
Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
 ACOUSTICS, SPEECH AND SIGNAL PROCESSING, IEEE TRANSACTIONS ON
, 1980
"... Several parametric representations of the acoustic signal were compared as to word recognition performance in a syllableoriented continuous speech recognition system. The vocabulary included many phonetically similar monosyllabic words, therefore the emphasis was on ability to retain phonetically ..."
Abstract

Cited by 1089 (2 self)
 Add to MetaCart
generated using an efficient dynamic method, and test data were time registered wi th the templates. A set of ten melfrequency cepstrum coefficients computed every 6 " 4 ms resulted in the best performance, namely 96.. 5 % and 9500 % recognition with each of two speakers.. The superior performance
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
propose a method to approach this problem by trying to estimate a function f which is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length
Two step cca: A new spectral method for estimating vector models of words
 In Proceedings of the 29th International Conference on Machine learning, ICML’12
, 2012
"... Unlabeled data is often used to learn representations which can be used to supplement baseline features in a supervised learner. For example, for text applications where the words lie in a very high dimensional space (the size of the vocabulary), one can learn a low rank “dictionary ” by an eigendec ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
” by an eigendecomposition of the word cooccurrence matrix (e.g. using PCA or CCA). In this paper, we present a new spectral method based on CCA to learn an eigenword dictionary. Our improved procedure computes two set of CCAs, the first one between the left and right contexts of the given word and the second one between
Results 1  10
of
423,163