Results 1  10
of
19
Solving Systems of Polynomial Equations
 AMERICAN MATHEMATICAL SOCIETY, CBMS REGIONAL CONFERENCES SERIES, NO 97
, 2002
"... One of the most classical problems of mathematics is to solve systems of polynomial equations in several unknowns. Today, polynomial models are ubiquitous and widely applied across the sciences. They arise in robotics, coding theory, optimization, mathematical biology, computer vision, game theory, ..."
Abstract

Cited by 221 (14 self)
 Add to MetaCart
One of the most classical problems of mathematics is to solve systems of polynomial equations in several unknowns. Today, polynomial models are ubiquitous and widely applied across the sciences. They arise in robotics, coding theory, optimization, mathematical biology, computer vision, game theory, statistics, machine learning, control theory, and numerous other areas. The set of solutions to a system of polynomial equations is an algebraic variety, the basic object of algebraic geometry. The algorithmic study of algebraic varieties is the central theme of computational algebraic geometry. Exciting recent developments in symbolic algebra and numerical software for geometric calculations have revolutionized the field, making formerly inaccessible problems tractable, and providing fertile ground for experimentation and conjecture. The first half of this book furnishes an introduction and represents a snapshot of the state of the art regarding systems of polynomial equations. Afficionados of the wellknown text books by Cox, Little, and O’Shea will find familiar themes in the first five chapters: polynomials in one variable, Gröbner
On the frontier of polynomial computations in tropical geometry
 Journal of Symbolic Computation
"... Abstract. We study some basic algorithmic problems concerning the intersection of tropical hypersurfaces in general dimension: deciding whether this intersection is nonempty, whether it is a tropical variety, and whether it is connected, as well as counting the number of connected components. We cha ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
Abstract. We study some basic algorithmic problems concerning the intersection of tropical hypersurfaces in general dimension: deciding whether this intersection is nonempty, whether it is a tropical variety, and whether it is connected, as well as counting the number of connected components. We
Applicable Algebraic Geometry: Real Solutions, Applications, and Combinatorics
"... While algebraic geometry is concerned with basic questions about solutions to equations, its value to other disciplines is through concrete objects and computational tools, as applications require knowledge of specific geometric objects and explicit, often realnumber, solutions. Modern tools from co ..."
Abstract
 Add to MetaCart
on applications of algebraic geometry, all with a substantial combinatorial component and an essential computational/experimental core. The intellectual merits of this activity include basic research to improve our understanding of real solutions to systems of polynomial equations through experimentation
Symbolic and numeric methods for exploiting structure in constructing resultant matrices
 J. SYMB. COMP
, 2001
"... Resultants characterize the existence of roots of systems of multivariate nonlinear polynomial equations, while their matrices reduce the computation of all common zeros to a problem in linear algebra. Sparse elimination theory has introduced the sparse resultant, which takes into account the sparse ..."
Abstract

Cited by 20 (12 self)
 Add to MetaCart
Resultants characterize the existence of roots of systems of multivariate nonlinear polynomial equations, while their matrices reduce the computation of all common zeros to a problem in linear algebra. Sparse elimination theory has introduced the sparse resultant, which takes into account the sparse structure of the polynomials. The construction of sparse resultant, or Newton, matrices is the critical step in the computation of the multivariate resultant and the solution of a nonlinear system. We reveal and exploit the quasiToeplitz structure of the Newton matrix, thus decreasing the time complexity of constructing such matrices by roughly one order of magnitude to achieve quasiquadratic complexity in the matrix dimension. The space complexity is also decreased analogously. These results imply similar improvements in the complexity of computing the resultant polynomial itself and of solving zerodimensional systems. Our approach relies on fast vectorbymatrix multiplication and uses the following two methods as building blocks. First, a fast and numerically stable method for determining the rank of rectangular matrices, which works exclusively over oating point arithmetic. Second, exact polynomial arithmetic algorithms that improve upon the complexity of polynomial multiplication under our model of sparseness, o ering bounds linear in the number of variables and the number of nonzero terms.
Algorithms in Semialgebraic Geometry
, 1996
"... In this thesis we present new algorithms to solve several very general problems of semialgebraic geometry. These are currently the best algorithms for solving these problems. In addition, we have proved new bounds on the topological complexity of real semialgebraic sets, in terms of the paramete ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
In this thesis we present new algorithms to solve several very general problems of semialgebraic geometry. These are currently the best algorithms for solving these problems. In addition, we have proved new bounds on the topological complexity of real semialgebraic sets, in terms of the parameters of the polynomial system defining them, which improve some old and widely used results in this field. In the first part of the thesis we describe new algorithms for solving the decision problem for the first order theory of real closed fields and the more general problem of quantifier elimination. Moreover, we prove some purely mathematical theorems on the number of connected components and on the existence of small rational points in a given semialgebraic set. The second part of this thesis deals with connectivity questions of semialgebraic sets. We develop new techniques in order to give a...
Algebraic Geometry Over Four Rings and the Frontier to Tractability
 CONTEMPORARY MATHEMATICS
"... We present some new and recent algorithmic results concerning polynomial system solving over various rings. In particular, we present some of the best recent bounds on: (a) the complexity of calculating the complex dimension of an algebraic set (b) the height of the zerodimensional part of an algeb ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
We present some new and recent algorithmic results concerning polynomial system solving over various rings. In particular, we present some of the best recent bounds on: (a) the complexity of calculating the complex dimension of an algebraic set (b) the height of the zerodimensional part of an algebraic set over C (c) the number of connected components of a semialgebraic set We also present some results which significantly lower the complexity of deciding the emptiness of hypersurface intersections over C and Q, given the truth of the Generalized Riemann Hypothesis. Furthermore, we state some recent progress on the decidability of the prefixes 989 and 9989, quantified over the positive integers. As an application, we conclude with a result connecting Hilbert's Tenth Problem in three variables and height bounds for integral points on algebraic curves. This paper
Results 1  10
of
19