Results 1  10
of
667
Closest Point Search in Lattices
 IEEE TRANS. INFORM. THEORY
, 2000
"... In this semitutorial paper, a comprehensive survey of closestpoint search methods for lattices without a regular structure is presented. The existing search strategies are described in a unified framework, and differences between them are elucidated. An efficient closestpoint search algorithm, ba ..."
Abstract

Cited by 324 (2 self)
 Add to MetaCart
theoretical comparison with the Kannan algorithm and an experimental comparison with the Pohst algorithm and its variants, such as the recent ViterboBoutros decoder. The improvement increases with the dimension of the lattice. Modifications of the algorithm are developed to solve a number of related search
The BrunnMinkowski inequality
 Bull. Amer. Math. Soc. (N.S
, 2002
"... Abstract. In 1978, Osserman [124] wrote an extensive survey on the isoperimetric inequality. The BrunnMinkowski inequality can be proved in a page, yet quickly yields the classical isoperimetric inequality for important classes of subsets of R n, and deserves to be better known. This guide explains ..."
Abstract

Cited by 184 (9 self)
 Add to MetaCart
Abstract. In 1978, Osserman [124] wrote an extensive survey on the isoperimetric inequality. The BrunnMinkowski inequality can be proved in a page, yet quickly yields the classical isoperimetric inequality for important classes of subsets of R n, and deserves to be better known. This guide
Limits to Parallel Computation: PCompleteness Theory
, 1995
"... D. Kavadias, L. M. Kirousis, and P. G. Spirakis. The complexity of the reliable connectivity problem. Information Processing Letters, 39(5):245252, 13 September 1991. (135) [206] P. Kelsen. On computing a maximal independent set in a hypergraph of constant dimension in parallel. In Proceedings of ..."
Abstract

Cited by 167 (5 self)
 Add to MetaCart
of the TwentyFourth Annual ACM Symposium on Theory of Computing, pages 339369, Victoria, B.C., Canada, May 1992. (225) [207] L. G. Khachian. A polynomial time algorithm for linear programming. Doklady Akademii Nauk SSSR, n.s., 244(5):10931096, 1979. English translation in Soviet Math. Dokl. 20, 191
Approximation Algorithms for Disjoint Paths Problems
, 1996
"... The construction of disjoint paths in a network is a basic issue in combinatorial optimization: given a network, and specified pairs of nodes in it, we are interested in finding disjoint paths between as many of these pairs as possible. This leads to a variety of classical NPcomplete problems for w ..."
Abstract

Cited by 166 (0 self)
 Add to MetaCart
The construction of disjoint paths in a network is a basic issue in combinatorial optimization: given a network, and specified pairs of nodes in it, we are interested in finding disjoint paths between as many of these pairs as possible. This leads to a variety of classical NPcomplete problems
Isoperimetric Problems for Convex Bodies and a Localization Lemma
, 1995
"... We study the smallest number /(K) such that a given convex body K in IR n can be cut into two parts K 1 and K 2 by a surface with an (n \Gamma 1)dimensional measure /(K)vol(K 1 ) \Delta vol(K 2 )=vol(K). Let M 1 (K) be the average distance of a point of K from its center of gravity. We prove for ..."
Abstract

Cited by 129 (7 self)
 Add to MetaCart
for the "isoperimetric coefficient" that /(K) ln 2 M 1 (K) ; and give other upper and lower bounds. We conjecture that our upper bound is best possible up to a constant. Our main tool is a general "Localization Lemma" that reduces integral inequalities over the ndimensional space
Hardness Of Approximations
, 1996
"... This chapter is a selfcontained survey of recent results about the hardness of approximating NPhard optimization problems. ..."
Abstract

Cited by 120 (5 self)
 Add to MetaCart
This chapter is a selfcontained survey of recent results about the hardness of approximating NPhard optimization problems.
Subgraph densities in signed graphons and the local SimonovitsSidorenko conjecture
 ELECTRON J. COMBIN
, 2011
"... We prove inequalities between the densities of various bipartite subgraphs in signed graphs. One of the main inequalities is that the density of any bipartite graph with girth 2r cannot exceed the density of the 2rcycle. This study is motivated by the Simonovits–Sidorenko conjecture, which states t ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
We prove inequalities between the densities of various bipartite subgraphs in signed graphs. One of the main inequalities is that the density of any bipartite graph with girth 2r cannot exceed the density of the 2rcycle. This study is motivated by the Simonovits–Sidorenko conjecture, which states
Results 1  10
of
667