Results 1  10
of
6,558
Testing Fourier dimensionality and sparsity
"... Abstract. We present a range of new results for testing properties of Boolean functions that are defined in terms of the Fourier spectrum. Broadly speaking, our results show that the property of a Boolean function having a concise Fourier representation is locally testable. We first give an efficien ..."
Abstract

Cited by 22 (3 self)
 Add to MetaCart
an efficient algorithm for testing whether the Fourier spectrum of a Boolean function is supported in a lowdimensional subspace of F n 2 (equivalently, for testing whether f is a junta over a small number of parities). We next give an efficient algorithm for testing whether a Boolean function has a sparse
KSVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
, 2006
"... In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signalatoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and inc ..."
Abstract

Cited by 930 (41 self)
 Add to MetaCart
signal representations. Given a set of training signals, we seek the dictionary that leads to the best representation for each member in this set, under strict sparsity constraints. We present a new method—the KSVD algorithm—generalizing the umeans clustering process. KSVD is an iterative method
Compressive sampling
, 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract

Cited by 1427 (15 self)
 Add to MetaCart
Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired
The 2005 pascal visual object classes challenge
, 2006
"... Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not presegmented objects). Four object classes were selected: motorbikes, bicycles, cars and peop ..."
Abstract

Cited by 633 (24 self)
 Add to MetaCart
Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not presegmented objects). Four object classes were selected: motorbikes, bicycles, cars and people. Twelve teams entered the challenge. In this chapter we provide details of the datasets, algorithms used by the teams, evaluation criteria, and results achieved. 1
Reality Mining: Sensing Complex Social Systems
 J. OF PERSONAL AND UBIQUITOUS COMPUTING
, 2005
"... We introduce a system for sensing complex social systems with data collected from one hundred mobile phones over the course of six months. We demonstrate the ability to use standard Bluetoothenabled mobile telephones to measure information access and use in different contexts, recognize social patt ..."
Abstract

Cited by 709 (27 self)
 Add to MetaCart
We introduce a system for sensing complex social systems with data collected from one hundred mobile phones over the course of six months. We demonstrate the ability to use standard Bluetoothenabled mobile telephones to measure information access and use in different contexts, recognize social patterns in daily user activity, infer relationships, identify socially significant locations, and model organizational rhythms.
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that for large n, and for all Φ’s except a negligible fraction, the following property holds: For every y having a representation y = Φα0 by a coefficient vector α0 ∈ R m with fewer than ρ · n nonzeros, the solution α1 of the ℓ 1 minimization problem min �x�1 subject to Φα = y is unique and equal to α0. In contrast, heuristic attempts to sparsely solve such systems – greedy algorithms and thresholding – perform poorly in this challenging setting. The techniques include the use of random proportional embeddings and almostspherical sections in Banach space theory, and deviation bounds for the eigenvalues of random Wishart matrices.
Results 1  10
of
6,558