Results 1  10
of
5,034
Making the most of statistical analyses: Improving interpretation and presentation
 American Journal of Political Science
, 2000
"... Social scientists rarely take full advantage of the information available in their statistical results. As a consequence, they miss opportunities to present quantities that are of greatest substantive interest for their research and express the appropriate degree of certainty about these quantities. ..."
Abstract

Cited by 550 (24 self)
 Add to MetaCart
Social scientists rarely take full advantage of the information available in their statistical results. As a consequence, they miss opportunities to present quantities that are of greatest substantive interest for their research and express the appropriate degree of certainty about these quantities. In this article, we offer an approach, built on the technique of statistical simulation, to extract the currently overlooked information from any statistical method and to interpret and present it in a readerfriendly manner. Using this technique requires some expertise,
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances — including the key problems of computing marginals and modes of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing likelihoods, marginal probabilities and most probable configurations. We describe how a wide varietyof algorithms — among them sumproduct, cluster variational methods, expectationpropagation, mean field methods, maxproduct and linear programming relaxation, as well as conic programming relaxations — can all be understood in terms of exact or approximate forms of these variational representations. The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in largescale statistical models.
A framework for learning predictive structures from multiple tasks and unlabeled data
 Journal of Machine Learning Research
, 2005
"... One of the most important issues in machine learning is whether one can improve the performance of a supervised learning algorithm by including unlabeled data. Methods that use both labeled and unlabeled data are generally referred to as semisupervised learning. Although a number of such methods ar ..."
Abstract

Cited by 440 (3 self)
 Add to MetaCart
One of the most important issues in machine learning is whether one can improve the performance of a supervised learning algorithm by including unlabeled data. Methods that use both labeled and unlabeled data are generally referred to as semisupervised learning. Although a number of such methods are proposed, at the current stage, we still don’t have a complete understanding of their effectiveness. This paper investigates a closely related problem, which leads to a novel approach to semisupervised learning. Specifically we consider learning predictive structures on hypothesis spaces (that is, what kind of classifiers have good predictive power) from multiple learning tasks. We present a general framework in which the structural learning problem can be formulated and analyzed theoretically, and relate it to learning with unlabeled data. Under this framework, algorithms for structural learning will be proposed, and computational issues will be investigated. Experiments will be given to demonstrate the effectiveness of the proposed algorithms in the semisupervised learning setting. 1.
Consistency of the group lasso and multiple kernel learning
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2007
"... We consider the leastsquare regression problem with regularization by a block 1norm, i.e., a sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as the group Lasso, extends the usual regularization by the 1norm where all spaces have dimension one, where it ..."
Abstract

Cited by 281 (34 self)
 Add to MetaCart
We consider the leastsquare regression problem with regularization by a block 1norm, i.e., a sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as the group Lasso, extends the usual regularization by the 1norm where all spaces have dimension one, where it is commonly referred to as the Lasso. In this paper, we study the asymptotic model consistency of the group Lasso. We derive necessary and sufficient conditions for the consistency of group Lasso under practical assumptions, such as model misspecification. When the linear predictors and Euclidean norms are replaced by functions and reproducing kernel Hilbert norms, the problem is usually referred to as multiple kernel learning and is commonly used for learning from heterogeneous data sources and for non linear variable selection. Using tools from functional analysis, and in particular covariance operators, we extend the consistency results to this infinite dimensional case and also propose an adaptive scheme to obtain a consistent model estimate, even when the necessary condition required for the non adaptive scheme is not satisfied.
Elske van der Vaart 1,2
"... Animal ecologists have successfully applied agentbased models to many different problems. Often, these focus on issues concerning collective behaviors, environmental interactions, or the evolution of traits. In these cases, patterns of interest can usually be investigated by constructing the approp ..."
Abstract
 Add to MetaCart
Animal ecologists have successfully applied agentbased models to many different problems. Often, these focus on issues concerning collective behaviors, environmental interactions, or the evolution of traits. In these cases, patterns of interest can usually be investigated by constructing the appropriate multiagent system, and then varying or evolving model parameters. In recent years, however, the study of animal behavior has increasingly expanded to include the study of animal cognition. In this field, the question is not just how or why a particular behavior is performed, but also what its ‘mental underpinnings ’ are. In this paper, we argue that agentbased models are uniquely suited to explore questions concerning animal cognition, as the experimenter has direct access to agents ’ internal representations, control over their evolutionary history, and a perfect record of their previous learning experience. To make this possible, a new modeling paradigm must be developed, where agents ’ reasoning processes are explicitly simulated, and can evolve over time. We propose that this be done in the form of “ifthen ” rules, where only the form is specified, not the content. This should allow qualitatively different reasoning processes to emerge, which may be more or less “cognitive ” in nature. In this paper, we illustrate the potential of such an approach with a prototype model. Agents must evolve explicit rule sets to forage for food, and to escape predators. It is shown that even in this relatively simple setup, different strategies emerge, as well as unexpected outcomes.
Asymptotics for Lassotype estimators
, 2000
"... this paper, we consider the asymptotic behaviour of regression estimators that minimize the residual sum of squares plus a penalty proportional to ..."
Abstract

Cited by 254 (3 self)
 Add to MetaCart
this paper, we consider the asymptotic behaviour of regression estimators that minimize the residual sum of squares plus a penalty proportional to
Optimal aggregation of classifiers in statistical learning
 Ann. Statist
, 2004
"... Classification can be considered as nonparametric estimation of sets, where the risk is defined by means of a specific distance between sets associated with misclassification error. It is shown that the rates of convergence of classifiers depend on two parameters: the complexity of the class of cand ..."
Abstract

Cited by 225 (7 self)
 Add to MetaCart
Classification can be considered as nonparametric estimation of sets, where the risk is defined by means of a specific distance between sets associated with misclassification error. It is shown that the rates of convergence of classifiers depend on two parameters: the complexity of the class of candidate sets and the margin parameter. The dependence is explicitly given, indicating that optimal fast rates approaching O(n−1) can be attained, where n is the sample size, and that the proposed classifiers have the property of robustness to the margin. The main result of the paper concerns optimal aggregation of classifiers: we suggest a classifier that automatically adapts both to the complexity and to the margin, and attains the optimal fast rates, up to a logarithmic factor. 1. Introduction. Let (Xi,Yi)
On the Influence of the Kernel on the Consistency of Support Vector Machines
 Journal of Machine Learning Research
, 2001
"... In this article we study the generalization abilities of several classifiers of support vector machine (SVM) type using a certain class of kernels that we call universal. It is shown that the soft margin algorithms with universal kernels are consistent for a large class of classification problems ..."
Abstract

Cited by 215 (21 self)
 Add to MetaCart
In this article we study the generalization abilities of several classifiers of support vector machine (SVM) type using a certain class of kernels that we call universal. It is shown that the soft margin algorithms with universal kernels are consistent for a large class of classification problems including some kind of noisy tasks provided that the regularization parameter is chosen well. In particular we derive a simple su#cient condition for this parameter in the case of Gaussian RBF kernels. On the one hand our considerations are based on an investigation of an approximation propertythe socalled universalityof the used kernels that ensures that all continuous functions can be approximated by certain kernel expressions. This approximation property also gives a new insight into the role of kernels in these and other algorithms. On the other hand the results are achieved by a precise study of the underlying optimization problems of the classifiers. Furthermore, we show consistency for the maximal margin classifier as well as for the soft margin SVM's in the presence of large margins. In this case it turns out that also constant regularization parameters ensure consistency for the soft margin SVM's. Finally we prove that even for simple, noise free classification problems SVM's with polynomial kernels can behave arbitrarily badly.
Results 1  10
of
5,034