Results 1  10
of
1,662,886
Predictive regressions
 Journal of Financial Economics
, 1999
"... When a rate of return is regressed on a lagged stochastic regressor, such as a dividend yield, the regression disturbance is correlated with the regressor's innovation. The OLS estimator's "nitesample properties, derived here, can depart substantially from the standard regression set ..."
Abstract

Cited by 452 (19 self)
 Add to MetaCart
When a rate of return is regressed on a lagged stochastic regressor, such as a dividend yield, the regression disturbance is correlated with the regressor's innovation. The OLS estimator's "nitesample properties, derived here, can depart substantially from the standard regression
Evaluating the Accuracy of SamplingBased Approaches to the Calculation of Posterior Moments
 IN BAYESIAN STATISTICS
, 1992
"... Data augmentation and Gibbs sampling are two closely related, samplingbased approaches to the calculation of posterior moments. The fact that each produces a sample whose constituents are neither independent nor identically distributed complicates the assessment of convergence and numerical accurac ..."
Abstract

Cited by 583 (14 self)
 Add to MetaCart
accuracy of the approximations to the expected value of functions of interest under the posterior. In this paper methods from spectral analysis are used to evaluate numerical accuracy formally and construct diagnostics for convergence. These methods are illustrated in the normal linear model
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 886 (35 self)
 Add to MetaCart
. In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variation in the perturbed quantity. Up to the higherorder terms that are ignored in the expansion, these statistics tend to be more realistic than perturbation bounds obtained in terms of norms. The technique is applied to a number of problems in matrix perturbation theory, including least squares and the eigenvalue problem. Key words. perturbation theory, random matrix, linear system, least squares, eigenvalue, eigenvector, invariant subspace, singular value AMS(MOS) subject classifications. 15A06, 15A12, 15A18, 15A52, 15A60 1. Introduction. Let A be a matrix and let F be a matrix valued function of A. Two principal problems of matrix perturbation theory are the following. Given a matrix E, pr...
Least angle regression
 Ann. Statist
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract

Cited by 1308 (43 self)
 Add to MetaCart
to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm
Regression quantiles
 Econometrica
, 1978
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 870 (19 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
Quantile Regression
 JOURNAL OF ECONOMIC PERSPECTIVES—VOLUME 15, NUMBER 4—FALL 2001—PAGES 143–156
, 2001
"... We say that a student scores at the fifth quantile of a standardized exam if he performs better than the proportion � of the reference group of students and worse than the proportion (1–�). Thus, half of students perform better than the median student and half perform worse. Similarly, the quartiles ..."
Abstract

Cited by 937 (10 self)
 Add to MetaCart
, the quartiles divide the population into four segments with equal proportions of the reference population in each segment. The quintiles divide the population into five parts; the deciles into ten parts. The quantiles, or percentiles, or occasionally fractiles, refer to the general case. Quantile regression
The Valuation of Options for Alternative Stochastic Processes
 Journal of Financial Economics
, 1976
"... This paper examines the structure of option valuation problems and develops a new technique for their solution. It also introduces several jump and diffusion processes which have nol been used in previous models. The technique is applied lo these processes to find explicit option valuation formulas, ..."
Abstract

Cited by 661 (4 self)
 Add to MetaCart
This paper examines the structure of option valuation problems and develops a new technique for their solution. It also introduces several jump and diffusion processes which have nol been used in previous models. The technique is applied lo these processes to find explicit option valuation formulas
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 569 (47 self)
 Add to MetaCart
matrix inequality (LMI) problems. A notion of KarushKuhnTucker polynomials is introduced in a global optimality condition. Some illustrative examples are provided. Key words. global optimization, theory of moments and positive polynomials, semidefinite programming AMS subject classifications. 90C22
Contour Tracking By Stochastic Propagation of Conditional Density
, 1996
"... . In Proc. European Conf. Computer Vision, 1996, pp. 343356, Cambridge, UK The problem of tracking curves in dense visual clutter is a challenging one. Trackers based on Kalman filters are of limited use; because they are based on Gaussian densities which are unimodal, they cannot represent s ..."
Abstract

Cited by 658 (24 self)
 Add to MetaCart
Density Propagation over time. It uses `factored sampling', a method previously applied to interpretation of static images, in which the distribution of possible interpretations is represented by a randomly generated set of representatives. The Condensation algorithm combines factored sampling
Results 1  10
of
1,662,886