Results 1  10
of
1,523,109
Sparse SingleIndex Model
, 2011
"... Let (X,Y) be a random pair taking values in R p × R. In the socalled singleindex model, one has Y = f ⋆ (θ ⋆T X) + W, where f ⋆ is an unknown univariate measurable function, θ ⋆ is an unknown vector in R d, and W denotes a random noise satisfying E[WX] = 0. The singleindex model is known to offe ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
Let (X,Y) be a random pair taking values in R p × R. In the socalled singleindex model, one has Y = f ⋆ (θ ⋆T X) + W, where f ⋆ is an unknown univariate measurable function, θ ⋆ is an unknown vector in R d, and W denotes a random noise satisfying E[WX] = 0. The singleindex model is known
Good ErrorCorrecting Codes based on Very Sparse Matrices
, 1999
"... We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract

Cited by 741 (23 self)
 Add to MetaCart
We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties
The University of Florida sparse matrix collection
 NA DIGEST
, 1997
"... The University of Florida Sparse Matrix Collection is a large, widely available, and actively growing set of sparse matrices that arise in real applications. Its matrices cover a wide spectrum of problem domains, both those arising from problems with underlying 2D or 3D geometry (structural enginee ..."
Abstract

Cited by 538 (19 self)
 Add to MetaCart
and graphs, economic and financial modeling, theoretical and quantum chemistry, chemical process simulation, mathematics and statistics, and power networks). The collection meets a vital need that artificiallygenerated matrices cannot meet, and is widely used by the sparse matrix algorithms community
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
Linear spatial pyramid matching using sparse coding for image classification
 in IEEE Conference on Computer Vision and Pattern Recognition(CVPR
, 2009
"... Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algo ..."
Abstract

Cited by 488 (19 self)
 Add to MetaCart
the algorithms to handle more than thousands of training images. In this paper we develop an extension of the SPM method, by generalizing vector quantization to sparse coding followed by multiscale spatial max pooling, and propose a linear SPM kernel based on SIFT sparse codes. This new approach remarkably
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 423 (37 self)
 Add to MetaCart
is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance
Robust face recognition via sparse representation
 IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2008
"... We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse signa ..."
Abstract

Cited by 916 (41 self)
 Add to MetaCart
We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse
Generalized Partially Linear SingleIndex Models
 Journal of the American Statistical Association
, 1998
"... The typical generalized linear model for a regression of a response Y on predictors (X; Z) has conditional mean function based upon a linear combination of (X; Z). We generalize these models to have a nonparametric component, replacing the linear combination T 0 X + T 0 Z by 0 ( T 0 X) + T 0 Z, wher ..."
Abstract

Cited by 122 (30 self)
 Add to MetaCart
, where 0 ( ) is an unknown function. We call these generalized partially linear singleindex models (GPLSIM). The models include the "singleindex" models, which have 0 = 0. Using local linear methods, estimates of the unknown parameters ( 0 ; 0 ) and the unknown function 0 ( ) are proposed
A View Of The Em Algorithm That Justifies Incremental, Sparse, And Other Variants
 Learning in Graphical Models
, 1998
"... . The EM algorithm performs maximum likelihood estimation for data in which some variables are unobserved. We present a function that resembles negative free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect to the d ..."
Abstract

Cited by 988 (18 self)
 Add to MetaCart
. The EM algorithm performs maximum likelihood estimation for data in which some variables are unobserved. We present a function that resembles negative free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect
Results 1  10
of
1,523,109