Results 1  10
of
42,907
Computational LambdaCalculus and Monads
, 1988
"... The calculus is considered an useful mathematical tool in the study of programming languages, since programs can be identified with terms. However, if one goes further and uses fijconversion to prove equivalence of programs, then a gross simplification 1 is introduced, that may jeopardise the ..."
Abstract

Cited by 505 (7 self)
 Add to MetaCart
the applicability of theoretical results to real situations. In this paper we introduce a new calculus based on a categorical semantics for computations. This calculus provides a correct basis for proving equivalence of programs, independent from any specific computational model. 1 Introduction This paper
Unsupervised Learning by Probabilistic Latent Semantic Analysis
 Machine Learning
, 2001
"... Abstract. This paper presents a novel statistical method for factor analysis of binary and count data which is closely related to a technique known as Latent Semantic Analysis. In contrast to the latter method which stems from linear algebra and performs a Singular Value Decomposition of cooccurren ..."
Abstract

Cited by 613 (4 self)
 Add to MetaCart
results for different types of text and linguistic data collections and discusses an application in automated document indexing. The experiments indicate substantial and consistent improvements of the probabilistic method over standard Latent Semantic Analysis.
Semantics of ContextFree Languages
 In Mathematical Systems Theory
, 1968
"... "Meaning " may be assigned to a string in a contextfree language by defining "attributes " of the symbols in a derivation tree for that string. The attributes can be defined by functions associated with each production in the grammar. This paper examines the implications of th ..."
Abstract

Cited by 559 (0 self)
 Add to MetaCart
specification of semantics which have appeared in the literature. A simple technique for specifying the "meaning " of languages defined by contextfree grammars is introduced in Section 1 of this paper, and its basic mathematical properties are investigated in Sections 2 and 3. An example which
A Structural Approach to Operational Semantics
, 1981
"... Syntax of a very simple programming language called L. What is abstract about it will be discussed a little here and later at greater length. For us syntax is a collection of syntactic sets of phrases; each set corresponds to a different type of phrase. Some of these sets are very simple and can be ..."
Abstract

Cited by 1543 (3 self)
 Add to MetaCart
Syntax of a very simple programming language called L. What is abstract about it will be discussed a little here and later at greater length. For us syntax is a collection of syntactic sets of phrases; each set corresponds to a different type of phrase. Some of these sets are very simple and can
Probabilistic Operational Semantics for the Lambda Calculus
"... Probabilistic operational semantics for a nondeterministic extension of pure lambda calculus is studied. In this semantics, a term evaluates to a (finite or infinite) distribution of values. Smallstep and bigstep semantics are both inductively and coinductively defined. Moreover, smallstep and bi ..."
Abstract
 Add to MetaCart
Probabilistic operational semantics for a nondeterministic extension of pure lambda calculus is studied. In this semantics, a term evaluates to a (finite or infinite) distribution of values. Smallstep and bigstep semantics are both inductively and coinductively defined. Moreover, small
Markov Logic Networks
 Machine Learning
, 2006
"... Abstract. We propose a simple approach to combining firstorder logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a firstorder knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects ..."
Abstract

Cited by 811 (40 self)
 Add to MetaCart
Abstract. We propose a simple approach to combining firstorder logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a firstorder knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects
A tutorial on hidden Markov models and selected applications in speech recognition
 PROCEEDINGS OF THE IEEE
, 1989
"... Although initially introduced and studied in the late 1960s and early 1970s, statistical methods of Markov source or hidden Markov modeling have become increasingly popular in the last several years. There are two strong reasons why this has occurred. First the models are very rich in mathematical s ..."
Abstract

Cited by 5777 (1 self)
 Add to MetaCart
Although initially introduced and studied in the late 1960s and early 1970s, statistical methods of Markov source or hidden Markov modeling have become increasingly popular in the last several years. There are two strong reasons why this has occurred. First the models are very rich in mathematical
Results 1  10
of
42,907