Results 1  10
of
601,877
Selecting the Median
, 1995
"... Improving a long standing result of Schonhage, Paterson and Pippenger we show that the median of a set containing n elements can be found using at most 2:95n comparisons. ..."
Abstract

Cited by 47 (5 self)
 Add to MetaCart
Improving a long standing result of Schonhage, Paterson and Pippenger we show that the median of a set containing n elements can be found using at most 2:95n comparisons.
On Lower Bounds for Selecting the Median
, 1999
"... We present a reformulation of the 2n+o(n) lower bound of Bent and John for the number of comparisons needed for selecting the median of n elements. Our reformulation uses a weight function. Apart from giving a more intuitive proof for the lower bound, the new formulation opens up possibilities fo ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
We present a reformulation of the 2n+o(n) lower bound of Bent and John for the number of comparisons needed for selecting the median of n elements. Our reformulation uses a weight function. Apart from giving a more intuitive proof for the lower bound, the new formulation opens up possibilities
Least Median of Squares Regression
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 1984
"... ..."
Regression Shrinkage and Selection Via the Lasso
 Journal of the Royal Statistical Society, Series B
, 1994
"... We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactl ..."
Abstract

Cited by 4055 (51 self)
 Add to MetaCart
that are exactly zero and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also
Lag length selection and the construction of unit root tests with good size and power
 Econometrica
, 2001
"... It is widely known that when there are errors with a movingaverage root close to −1, a high order augmented autoregression is necessary for unit root tests to have good size, but that information criteria such as the AIC and the BIC tend to select a truncation lag (k) that is very small. We conside ..."
Abstract

Cited by 534 (14 self)
 Add to MetaCart
It is widely known that when there are errors with a movingaverage root close to −1, a high order augmented autoregression is necessary for unit root tests to have good size, but that information criteria such as the AIC and the BIC tend to select a truncation lag (k) that is very small. We
An extensive empirical study of feature selection metrics for text classification
 J. of Machine Learning Research
, 2003
"... Machine learning for text classification is the cornerstone of document categorization, news filtering, document routing, and personalization. In text domains, effective feature selection is essential to make the learning task efficient and more accurate. This paper presents an empirical comparison ..."
Abstract

Cited by 483 (15 self)
 Add to MetaCart
Machine learning for text classification is the cornerstone of document categorization, news filtering, document routing, and personalization. In text domains, effective feature selection is essential to make the learning task efficient and more accurate. This paper presents an empirical comparison
Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation
, 2002
"... There are many sources of systematic variation in cDNA microarray experiments which affect the measured gene expression levels (e.g. differences in labeling efficiency between the two fluorescent dyes). The term normalization refers to the process of removing such variation. A constant adjustment is ..."
Abstract

Cited by 699 (9 self)
 Add to MetaCart
is often used to force the distribution of the intensity log ratios to have a median of zero for each slide. However, such global normalization approaches are not adequate in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. This article proposes
Quantile Regression
 JOURNAL OF ECONOMIC PERSPECTIVES—VOLUME 15, NUMBER 4—FALL 2001—PAGES 143–156
, 2001
"... We say that a student scores at the fifth quantile of a standardized exam if he performs better than the proportion � of the reference group of students and worse than the proportion (1–�). Thus, half of students perform better than the median student and half perform worse. Similarly, the quartiles ..."
Abstract

Cited by 937 (10 self)
 Add to MetaCart
We say that a student scores at the fifth quantile of a standardized exam if he performs better than the proportion � of the reference group of students and worse than the proportion (1–�). Thus, half of students perform better than the median student and half perform worse. Similarly
KLEE: Unassisted and Automatic Generation of HighCoverage Tests for Complex Systems Programs
"... We present a new symbolic execution tool, KLEE, capable of automatically generating tests that achieve high coverage on a diverse set of complex and environmentallyintensive programs. We used KLEE to thoroughly check all 89 standalone programs in the GNU COREUTILS utility suite, which form the cor ..."
Abstract

Cited by 541 (14 self)
 Add to MetaCart
the core userlevel environment installed on millions of Unix systems, and arguably are the single most heavily tested set of opensource programs in existence. KLEEgenerated tests achieve high line coverage — on average over 90% per tool (median: over 94%) — and significantly beat the coverage
The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm
, 1997
"... In this paper, we analyze a performance model for the TCP Congestion Avoidance algorithm. The model predicts the bandwidth of a sustained TCP connection subjected to light to moderate packet losses, such as loss caused by network congestion. It assumes that TCP avoids retransmission timeouts and alw ..."
Abstract

Cited by 648 (18 self)
 Add to MetaCart
and always has sufficient receiver window and sender data. The model predicts the Congestion Avoidance performance of nearly all TCP implementations under restricted conditions and of TCP with SelectiveAcknowledgements over a much wider range of Internet conditions. We verify
Results 1  10
of
601,877