Results 1  10
of
9,090
On the Lossiness of the Rabin Trapdoor Function
, 2013
"... Abstract. Lossy trapdoor functions, introduced by Peikert and Waters (STOC ’08), are functions that can be generated in two indistinguishable ways: either the function is injective, and there is a trapdoor to invert it, or the function is lossy, meaning that the size of its range is strictly smaller ..."
Abstract
 Add to MetaCart
. More recently, Kakvi and Kiltz (EUROCRYPT 2012) used the lossiness of RSA to show that the RSA Full Domain Hash signature scheme has a tight security reduction from the ΦHiding assumption. In this work, we consider the Rabin trapdoor function, i.e. modular squaring over Z ∗ N. We show that when
Publickey cryptosystems based on composite degree residuosity classes
 IN ADVANCES IN CRYPTOLOGY — EUROCRYPT 1999
, 1999
"... This paper investigates a novel computational problem, namely the Composite Residuosity Class Problem, and its applications to publickey cryptography. We propose a new trapdoor mechanism and derive from this technique three encryption schemes: a trapdoor permutation and two homomorphic probabilist ..."
Abstract

Cited by 997 (4 self)
 Add to MetaCart
This paper investigates a novel computational problem, namely the Composite Residuosity Class Problem, and its applications to publickey cryptography. We propose a new trapdoor mechanism and derive from this technique three encryption schemes: a trapdoor permutation and two homomorphic
Lossy Trapdoor Functions and Their Applications
 ELECTRONIC COLLOQUIUM ON COMPUTATIONAL COMPLEXITY, REPORT NO. 80 (2007)
, 2007
"... We propose a new general primitive called lossy trapdoor functions (lossy TDFs), and realize it under a variety of different number theoretic assumptions, including hardness of the decisional DiffieHellman (DDH) problem and the worstcase hardness of standard lattice problems. Using lossy TDFs, we ..."
Abstract

Cited by 125 (21 self)
 Add to MetaCart
We propose a new general primitive called lossy trapdoor functions (lossy TDFs), and realize it under a variety of different number theoretic assumptions, including hardness of the decisional DiffieHellman (DDH) problem and the worstcase hardness of standard lattice problems. Using lossy TDFs
The exact security of digital signatures: How to sign with RSA and Rabin
, 1996
"... We describe an RSAbased signing scheme called PSS which combines essentially optimal efficiency with attractive security properties. Signing takes one RSA decryption plus some hashing, verification takes one RSA encryption plus some hashing, and the size of the signature is the size of the modulus. ..."
Abstract

Cited by 395 (16 self)
 Add to MetaCart
We describe an RSAbased signing scheme called PSS which combines essentially optimal efficiency with attractive security properties. Signing takes one RSA decryption plus some hashing, verification takes one RSA encryption plus some hashing, and the size of the signature is the size of the modulus
A Digital Signature Scheme Secure Against Adaptive ChosenMessage Attacks
, 1995
"... We present a digital signature scheme based on the computational diculty of integer factorization. The scheme possesses the novel property of being robust against an adaptive chosenmessage attack: an adversary who receives signatures for messages of his choice (where each message may be chosen in a ..."
Abstract

Cited by 988 (44 self)
 Add to MetaCart
were considered in the folklore to be contradictory. More generally, we show how to construct a signature scheme with such properties based on the existence of a "clawfree" pair of permutations  a potentially weaker assumption than the intractibility of integer factorization. The new scheme
How to leak a secret
 PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON THE THEORY AND APPLICATION OF CRYPTOLOGY AND INFORMATION SECURITY: ADVANCES IN CRYPTOLOGY
, 2001
"... In this paper we formalize the notion of a ring signature, which makes it possible to specify a set of possible signers without revealing which member actually produced the signature. Unlike group signatures, ring signatures have no group managers, no setup procedures, no revocation procedures, and ..."
Abstract

Cited by 2518 (5 self)
 Add to MetaCart
In this paper we formalize the notion of a ring signature, which makes it possible to specify a set of possible signers without revealing which member actually produced the signature. Unlike group signatures, ring signatures have no group managers, no setup procedures, no revocation procedures, and no coordination: any user can choose any set of possible signers that includes himself, and sign any message by using his secret key and the others ’ public keys, without getting their approval or assistance. Ring signatures provide an elegant way to leak authoritative secrets in an anonymous way, to sign casual email in a way which can only be verified by its intended recipient, and to solve other problems in multiparty computations. The main contribution of this paper is a new construction of such signatures which is unconditionally signerambiguous, provably secure in the random oracle model, and exceptionally efficient: adding each ring member increases the cost of signing or verifying by a single modular multiplication and a single symmetric encryption.
Random Oracles are Practical: A Paradigm for Designing Efficient Protocols
, 1995
"... We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the ..."
Abstract

Cited by 1645 (75 self)
 Add to MetaCart
We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the random oracle model, and then replacing oracle accesses by the computation of an "appropriately chosen" function h. This paradigm yields protocols much more efficient than standard ones while retaining many of the advantages of provable security. We illustrate these gains for problems including encryption, signatures, and zeroknowledge proofs.
Handbook of Applied Cryptography
, 1997
"... As we draw near to closing out the twentieth century, we see quite clearly that the informationprocessing and telecommunications revolutions now underway will continue vigorously into the twentyfirst. We interact and transact by directing flocks of digital packets towards each other through cybers ..."
Abstract

Cited by 3280 (33 self)
 Add to MetaCart
As we draw near to closing out the twentieth century, we see quite clearly that the informationprocessing and telecommunications revolutions now underway will continue vigorously into the twentyfirst. We interact and transact by directing flocks of digital packets towards each other through cyberspace, carrying love notes, digital cash, and secret corporate documents. Our personal and economic lives rely more and more on our ability to let such ethereal carrier pigeons mediate at a distance what we used to do with facetoface meetings, paper documents, and a firm handshake. Unfortunately, the technical wizardry enabling remote collaborations is founded on broadcasting everything as sequences of zeros and ones that one's own dog wouldn't recognize. What is to distinguish a digital dollar when it is as easily reproducible as the spoken word? How do we converse privately when every syllable is bounced off a satellite and smeared over an entire continent? How should a bank know that it really is Bill Gates requesting from his laptop in Fiji a transfer of $10,000,000,000 to another bank? Fortunately, the magical mathematics of cryptography can help. Cryptography provides techniques for keeping information secret, for determining that information
A Method for Obtaining Digital Signatures and PublicKey Cryptosystems
 Communications of the ACM
, 1978
"... An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: 1. Couriers or other secure means are not needed to transmit keys, since a message can be enciphered usin ..."
Abstract

Cited by 3847 (28 self)
 Add to MetaCart
An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: 1. Couriers or other secure means are not needed to transmit keys, since a message can be enciphered using an encryption key publicly revealed by the intended recipient. Only he can decipher the message, since only he knows the corresponding decryption key. 2. A message can be "signed" using a privately held decryption key. Anyone can verify this signature using the corresponding publicly revealed encryption key. Signatures cannot be forged, and a signer cannot later deny the validity of his signature. This has obvious applications in "electronic mail" and "electronic funds transfer" systems. A message is encrypted by representing it as a number M, raising M to a publicly specified power e, and then taking the remainder when the result is divided by the publicly specified product, n, of two lar...
SPINS: Security Protocols for Sensor Networks ," Wireless Networks 8
"... As sensor networks edge closer towards widespread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis was placed on security. We design a suite of security building blocks that are optimized ..."
Abstract

Cited by 1052 (32 self)
 Add to MetaCart
As sensor networks edge closer towards widespread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis was placed on security. We design a suite of security building blocks that are optimized for resourceconstrained environments and wireless communication. SPINS has two secure building blocks: SNEP and TESLA. SNEP provides the following important baseline security primitives: Data con£dentiality, twoparty data authentication, and data freshness. A particularly hard problem is to provide ef£cient broadcast authentication, which is an important mechanism for sensor networks. TESLA is a new protocol which provides authenticated broadcast for severely resourceconstrained environments. We implemented the above protocols, and show that they are practical even on minimalistic hardware: The performance of the protocol suite easily matches the data rate of our network. Additionally, we demonstrate that the suite can be used for building higher level protocols. 1.
Results 1  10
of
9,090