• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 299,068
Next 10 →

Visual reconstruction

by Andrew Blake, Andrew Zisserman , 1987
"... ..."
Abstract - Cited by 891 (3 self) - Add to MetaCart
Abstract not found

Probabilistic Visual Learning for Object Representation

by Baback Moghaddam, Alex Pentland , 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in high-dimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture-of ..."
Abstract - Cited by 705 (15 self) - Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in high-dimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture

Usability Analysis of Visual Programming Environments: a `cognitive dimensions' framework

by T. R. G. Green, M. Petre - JOURNAL OF VISUAL LANGUAGES AND COMPUTING , 1996
"... The cognitive dimensions framework is a broad-brush evaluation technique for interactive devices and for non-interactive notations. It sets out a small vocabulary of terms designed to capture the cognitively-relevant aspects of structure, and shows how they can be traded off against each other. T ..."
Abstract - Cited by 510 (13 self) - Add to MetaCart
The cognitive dimensions framework is a broad-brush evaluation technique for interactive devices and for non-interactive notations. It sets out a small vocabulary of terms designed to capture the cognitively-relevant aspects of structure, and shows how they can be traded off against each other

A Tutorial on Visual Servo Control

by Seth Hutchinson, Greg Hager, Peter Corke - IEEE Transactions on Robotics and Automation , 1996
"... This paper provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review ..."
Abstract - Cited by 822 (25 self) - Add to MetaCart
review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process. We then present a taxonomy of visual servo control systems. The two major classes of systems, position-based and image-based systems, are then discussed. Since any

The eyes have it: A task by data type taxonomy for information visualizations

by Ben Shneiderman - IN IEEE SYMPOSIUM ON VISUAL LANGUAGES , 1996
"... A useful starting point for designing advanced graphical user interjaces is the Visual lnformation-Seeking Mantra: overview first, zoom and filter, then details on demand. But this is only a starting point in trying to understand the rich and varied set of information visualizations that have been ..."
Abstract - Cited by 1250 (28 self) - Add to MetaCart
A useful starting point for designing advanced graphical user interjaces is the Visual lnformation-Seeking Mantra: overview first, zoom and filter, then details on demand. But this is only a starting point in trying to understand the rich and varied set of information visualizations that have been

The Application of Petri Nets to Workflow Management

by W.M.P. Van Der Aalst , 1998
"... Workflow management promises a new solution to an age-old problem: controlling, monitoring, optimizing and supporting business processes. What is new about workflow management is the explicit representation of the business process logic which allows for computerized support. This paper discusses the ..."
Abstract - Cited by 522 (61 self) - Add to MetaCart
techniques which can be used to verify the correctness of workflow procedures. This paper introduces workflow management as an application domain for Petri nets, presents state-of-the-art results with respect to the verification of workflows, and highlights some Petri-net-based workflow tools.

The PASCAL Visual Object Classes (VOC) challenge

by Mark Everingham, Luc Van Gool, C. K. I. Williams, J. Winn, Andrew Zisserman , 2009
"... ... is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has be ..."
Abstract - Cited by 624 (20 self) - Add to MetaCart
... is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has

The 2005 pascal visual object classes challenge

by Mark Everingham, Andrew Zisserman, Christopher K. I. Williams, Luc Van Gool, Moray Allan, Christopher M. Bishop, Olivier Chapelle, Navneet Dalal, Thomas Deselaers, Gyuri Dorkó, Stefan Duffner, Jan Eichhorn, Jason D. R. Farquhar, Mario Fritz, Christophe Garcia, Tom Griffiths, Frederic Jurie, Daniel Keysers, Markus Koskela, Jorma Laaksonen, Diane Larlus, Bastian Leibe, Hongying Meng, Hermann Ney, Bernt Schiele, Cordelia Schmid, Edgar Seemann, John Shawe-taylor, Amos Storkey, Or Szedmak, Bill Triggs, Ilkay Ulusoy, Ville Viitaniemi, Jianguo Zhang , 2006
"... Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and peop ..."
Abstract - Cited by 633 (24 self) - Add to MetaCart
Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars

Statecharts: A Visual Formalism For Complex Systems

by David Harel , 1987
"... We present a broad extension of the conventional formalism of state machines and state diagrams, that is relevant to the specification and design of complex discrete-event systems, such as multi-computer real-time systems, communication protocols and digital control units. Our diagrams, which we cal ..."
Abstract - Cited by 2683 (56 self) - Add to MetaCart
We present a broad extension of the conventional formalism of state machines and state diagrams, that is relevant to the specification and design of complex discrete-event systems, such as multi-computer real-time systems, communication protocols and digital control units. Our diagrams, which we

Understanding Normal and Impaired Word Reading: Computational Principles in Quasi-Regular Domains

by David C. Plaut , James L. McClelland, Mark S. Seidenberg, Karalyn Patterson - PSYCHOLOGICAL REVIEW , 1996
"... We develop a connectionist approach to processing in quasi-regular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic and phono ..."
Abstract - Cited by 583 (94 self) - Add to MetaCart
We develop a connectionist approach to processing in quasi-regular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic
Next 10 →
Results 1 - 10 of 299,068
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2018 The Pennsylvania State University