Results 1  10
of
249,564
Strengths and Weaknesses of quantum computing
 SIAM JOURNAL OF COMPUTATION
, 1997
"... Recently a great deal of attention has been focused on quantum computation following a ..."
Abstract

Cited by 386 (10 self)
 Add to MetaCart
Recently a great deal of attention has been focused on quantum computation following a
Rapid solution of problems by quantum computation
 IN PROC
, 1992
"... A class of problems is described which can be solved more efficiently by quantum computation than by any classical or stochastic method. The quantum computation solves the problem with certainty in exponentially less time than any classical deterministic computation. ..."
Abstract

Cited by 450 (4 self)
 Add to MetaCart
A class of problems is described which can be solved more efficiently by quantum computation than by any classical or stochastic method. The quantum computation solves the problem with certainty in exponentially less time than any classical deterministic computation.
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken
Quantum theory, the ChurchTuring principle and the universal quantum computer
, 1985
"... computer ..."
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1268 (5 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
Faulttolerant quantum computation
 In Proc. 37th FOCS
, 1996
"... It has recently been realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest in quantum computation has since been growing. One of the main difficulties in realizing quantum computation is that decoherence tends to destroy the information i ..."
Abstract

Cited by 266 (5 self)
 Add to MetaCart
It has recently been realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest in quantum computation has since been growing. One of the main difficulties in realizing quantum computation is that decoherence tends to destroy the information
Elementary Gates for Quantum Computation
, 1995
"... We show that a set of gates that consists of all onebit quantum gates (U(2)) and the twobit exclusiveor gate (that maps Boolean values (x,y) to (x,x⊕y)) is universal in the sense that all unitary operations on arbitrarily many bits n (U(2 n)) can be expressed as compositions of these gates. We in ..."
Abstract

Cited by 276 (11 self)
 Add to MetaCart
constructions of quantum computational networks. We derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two and threebit quantum gates, the asymptotic number required for nbit DeutschToffoli gates, and make some observations about the number required
Quantum Computability
 SIAM Journal of Computation
, 1997
"... Abstract. In this paper some theoretical and (potentially) practical aspects of quantum computing are considered. Using the tools of transcendental number theory it is demonstrated that quantum Turing machines (QTM) with rational amplitudes are sufficient to define the class of bounded error quantum ..."
Abstract

Cited by 120 (0 self)
 Add to MetaCart
Abstract. In this paper some theoretical and (potentially) practical aspects of quantum computing are considered. Using the tools of transcendental number theory it is demonstrated that quantum Turing machines (QTM) with rational amplitudes are sufficient to define the class of bounded error
Topological quantum computation
 Bull. Amer. Math. Soc. (N.S
"... Abstract. The theory of quantum computation can be constructed from the abstract study of anyonic systems. In mathematical terms, these are unitary topological modular functors. They underlie the Jones polynomial and arise in WittenChernSimons theory. The braiding and fusion of anyonic excitations ..."
Abstract

Cited by 187 (20 self)
 Add to MetaCart
Abstract. The theory of quantum computation can be constructed from the abstract study of anyonic systems. In mathematical terms, these are unitary topological modular functors. They underlie the Jones polynomial and arise in WittenChernSimons theory. The braiding and fusion of anyonic
Results 1  10
of
249,564