Results 1  10
of
691,818
Probabilistic Principal Component Analysis
 Journal of the Royal Statistical Society, Series B
, 1999
"... Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation of paramet ..."
Abstract

Cited by 703 (5 self)
 Add to MetaCart
of parameters in a latent variable model closely related to factor analysis. We consider the properties of the associated likelihood function, giving an EM algorithm for estimating the principal subspace iteratively, and discuss, with illustrative examples, the advantages conveyed by this probabilistic approach
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
ofGaussians model (for multimodal distributions). These probability densities are then used to formulate a maximumlikelihood estimation framework for visual search and target detection for automatic object recognition and coding. Our learning technique is applied to the probabilistic visual modeling, detection
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
mechanical way to algorithms for SDP with proofs of convergence and polynomial time complexity also carrying over in a similar fashion. Finally we study the significance of these results in a variety of combinatorial optimization problems including the general 01 integer programs, the maximum clique
Improved algorithms for optimal winner determination in combinatorial auctions and generalizations
, 2000
"... Combinatorial auctions can be used to reach efficient resource and task allocations in multiagent systems where the items are complementary. Determining the winners is NPcomplete and inapproximable, but it was recently shown that optimal search algorithms do very well on average. This paper present ..."
Abstract

Cited by 598 (55 self)
 Add to MetaCart
Combinatorial auctions can be used to reach efficient resource and task allocations in multiagent systems where the items are complementary. Determining the winners is NPcomplete and inapproximable, but it was recently shown that optimal search algorithms do very well on average. This paper
A Bayesian method for the induction of probabilistic networks from data
 MACHINE LEARNING
, 1992
"... This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of probabili ..."
Abstract

Cited by 1381 (32 self)
 Add to MetaCart
This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction
Probabilistic Roadmaps for Path Planning in HighDimensional Configuration Spaces
 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
, 1996
"... A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edg ..."
Abstract

Cited by 1276 (124 self)
 Add to MetaCart
A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose
The Perceptron: A Probabilistic Model for Information Storage and Organization in The Brain
 Psychological Review
, 1958
"... If we are eventually to understand the capability of higher organisms for perceptual recognition, generalization, recall, and thinking, we must first have answers to three fundamental questions: 1. How is information about the physical world sensed, or detected, by the biological system? 2. In what ..."
Abstract

Cited by 1143 (0 self)
 Add to MetaCart
If we are eventually to understand the capability of higher organisms for perceptual recognition, generalization, recall, and thinking, we must first have answers to three fundamental questions: 1. How is information about the physical world sensed, or detected, by the biological system? 2. In what form is information stored, or remembered? 3. How does information contained in storage, or in memory, influence recognition and behavior? The first of these questions is in the
The StructureMapping Engine: Algorithm and Examples
 Artificial Intelligence
, 1989
"... This paper describes the StructureMapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structuremapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its flexibili ..."
Abstract

Cited by 512 (115 self)
 Add to MetaCart
This paper describes the StructureMapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structuremapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its
StrategyProofness and Arrow’s Conditions: Existence and Correspondence Theorems for Voting Procedures and Social Welfare Functions
 J. Econ. Theory
, 1975
"... Consider a committee which must select one alternative from a set of three or more alternatives. Committee members each cast a ballot which the voting procedure counts. The voting procedure is strategyproof if it always induces every committee member to cast a ballot revealing his preference. I pro ..."
Abstract

Cited by 542 (0 self)
 Add to MetaCart
Consider a committee which must select one alternative from a set of three or more alternatives. Committee members each cast a ballot which the voting procedure counts. The voting procedure is strategyproof if it always induces every committee member to cast a ballot revealing his preference. I prove three theorems. First, every strategyproof voting procedure is dictatorial. Second, this paper’s strategyproofness condition for voting procedures corresponds to Arrow’s rationality, independence of irrelevant alternatives, nonnegative response, and citizens ’ sovereignty conditions for social welfare functions. Third, Arrow’s general possibility theorem is proven in a new manner. 1. INTR~OUOTI~N Almost every participant in the formal deliberations of a committee realizes that situations may occur where he can manipulate the outcome of the committee’s vote by misrepresenting his preferences. For example, a voter in choosing among a Democrat, a Republican, and a minor party candidate may decide to follow the “sophisticated strategy ” of voting for his second choice, the Democrat, instead of his “sincere strategy ” of voting for his first choice, the minor party candidate, because he thinks that a vote for the minor party candidate would be a wasted vote on a hopeless cause.l The fundamental question I ask in this paper is if a committee can eliminate use of sophisticated strategies among its members by constructing a voting procedure that is “strategyproof ” in the sense * I am indebted to JeanMarie Blin, Richard Day, Theodore Groves, Rubin Saposnik, Maria Schmundt, Hugo Sonnenschein, and an anonymous referee for their help in the development of this paper. 1 Farquharson [4] introduced the terms sophisticated strategy and sincere strategy.
Singular Combinatorics
 ICM 2002 VOL. III 13
, 2002
"... Combinatorial enumeration leads to counting generating functions presenting a wide variety of analytic types. Properties of generating functions at singularities encode valuable information regarding asymptotic counting and limit probability distributions present in large random structures. " ..."
Abstract

Cited by 820 (10 self)
 Add to MetaCart
Combinatorial enumeration leads to counting generating functions presenting a wide variety of analytic types. Properties of generating functions at singularities encode valuable information regarding asymptotic counting and limit probability distributions present in large random structures
Results 1  10
of
691,818