Results 1  10
of
1,775,824
On the Comparison Complexity of the String PrefixMatching Problem
 IN PROC. 2ND EUROPEAN SYMPOSIUM ON ALGORITHMS, NUMBER 855 IN LECTURE NOTES IN COMPUTER SCIENCE
, 1995
"... In this paper we study the exact comparison complexity of the string prefixmatching problem in the deterministic sequential comparison model with equality tests. We derive almost tight lower and upper bounds on the number of symbol comparisons required in the worst case by online prefixmatchi ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
In this paper we study the exact comparison complexity of the string prefixmatching problem in the deterministic sequential comparison model with equality tests. We derive almost tight lower and upper bounds on the number of symbol comparisons required in the worst case by online prefixmatching
Tight Comparison Bounds for the String PrefixMatching Problem
, 1993
"... In the string prefixmatching problem one is interested in finding the longest prefix of a pattern string of length m that occurs starting at each position of a text string of length n. This is a natural generalization of the string matching problem where only occurrences of the whole pattern are so ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
are sought. The KnuthMorrisPratt string matching algorithm can be easily adapted to solve the string prefixmatching problem without making additional comparisons. In this paper we study the exact complexity of the string prefixmatching problem in the deterministic sequential comparison model. Our bounds
A Guided Tour to Approximate String Matching
 ACM COMPUTING SURVEYS
, 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract

Cited by 584 (38 self)
 Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining
String theory and noncommutative geometry
 JHEP
, 1999
"... We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from ..."
Abstract

Cited by 801 (8 self)
 Add to MetaCart
We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from
Suffix arrays: A new method for online string searches
, 1991
"... A new and conceptually simple data structure, called a suffix array, for online string searches is introduced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that employs novel algorithms. The main advantage of suffix arrays over suffix trees is that ..."
Abstract

Cited by 827 (0 self)
 Add to MetaCart
is that, in practice, they use three to five times less space. From a complexity standpoint, suffix arrays permit online string searches of the type, "Is W a substring of A?" to be answered in time O(P + log N), where P is the length of W and N is the length of A, which is competitive with (and
Fast Parallel String PrefixMatching
 Theoret. Comput. Sci
, 1992
"... An O(log log m) time n log m log log m processor CRCWPRAM algorithm for the string prefixmatching problem over a general alphabet is presented. The algorithm can also be used to compute the KMP failure function in O(log log m) time on m log m log log m processors. These results improve on th ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
An O(log log m) time n log m log log m processor CRCWPRAM algorithm for the string prefixmatching problem over a general alphabet is presented. The algorithm can also be used to compute the KMP failure function in O(log log m) time on m log m log log m processors. These results improve
ChernSimons Gauge Theory as a String Theory
, 2003
"... Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given spacetime interpretations. For instance, threedimensional ChernSimons gaug ..."
Abstract

Cited by 551 (14 self)
 Add to MetaCart
Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given spacetime interpretations. For instance, threedimensional Chern
Hierarchies from Fluxes in String Compactifications
, 2002
"... Warped compactifications with significant warping provide one of the few known mechanisms for naturally generating large hierarchies of physical scales. We demonstrate that this mechanism is realizable in string theory, and give examples involving orientifold compactifications of IIB string theory a ..."
Abstract

Cited by 724 (33 self)
 Add to MetaCart
Warped compactifications with significant warping provide one of the few known mechanisms for naturally generating large hierarchies of physical scales. We demonstrate that this mechanism is realizable in string theory, and give examples involving orientifold compactifications of IIB string theory
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract

Cited by 2837 (11 self)
 Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a
Results 1  10
of
1,775,824