Results 1  10
of
328,083
ShortestPath Kernels on Graphs
 In Proceedings of the 2005 International Conference on Data Mining
, 2005
"... Data mining algorithms are facing the challenge to deal with an increasing number of complex objects. For graph data, a whole toolbox of data mining algorithms becomes available by defining a kernel function on instances of graphs. Graph kernels based on walks, subtrees and cycles in graphs have bee ..."
Abstract

Cited by 61 (5 self)
 Add to MetaCart
propose graph kernels based on shortest paths. These kernels are computable in polynomial time, retain expressivity and are still positive definite. In experiments on classification of graph models of proteins, our shortestpath kernels show significantly higher classification accuracy than walk
Finding the k Shortest Paths
, 1997
"... We give algorithms for finding the k shortest paths (not required to be simple) connecting a pair of vertices in a digraph. Our algorithms output an implicit representation of these paths in a digraph with n vertices and m edges, in time O(m + n log n + k). We can also find the k shortest pat ..."
Abstract

Cited by 401 (2 self)
 Add to MetaCart
We give algorithms for finding the k shortest paths (not required to be simple) connecting a pair of vertices in a digraph. Our algorithms output an implicit representation of these paths in a digraph with n vertices and m edges, in time O(m + n log n + k). We can also find the k shortest
The ubiquitous Btree
 ACM Computing Surveys
, 1979
"... Btrees have become, de facto, a standard for file organization. File indexes of users, dedicated database systems, and generalpurpose access methods have all been proposed and nnplemented using Btrees This paper reviews Btrees and shows why they have been so successful It discusses the major var ..."
Abstract

Cited by 653 (0 self)
 Add to MetaCart
Btrees have become, de facto, a standard for file organization. File indexes of users, dedicated database systems, and generalpurpose access methods have all been proposed and nnplemented using Btrees This paper reviews Btrees and shows why they have been so successful It discusses the major
Mean shift, mode seeking, and clustering
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1995
"... AbstractMean shift, a simple iterative procedure that shifts each data point to the average of data points in its neighborhood, is generalized and analyzed in this paper. This generalization makes some kmeans like clustering algorithms its special cases. It is shown that mean shift is a modeseeki ..."
Abstract

Cited by 620 (0 self)
 Add to MetaCart
seeking process on a surface constructed with a “shadow ” kernel. For Gaussian kernels, mean shift is a gradient mapping. Convergence is studied for mean shift iterations. Cluster analysis is treated as a deterministic problem of finding a fixed point of mean shift that characterizes the data. Applications
Adaptive clustering for mobile wireless networks
 IEEE Journal on Selected Areas in Communications
, 1997
"... This paper describes a selforganizing, multihop, mobile radio network, which relies on a code division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled and are dynamically reconfig ..."
Abstract

Cited by 556 (11 self)
 Add to MetaCart
This paper describes a selforganizing, multihop, mobile radio network, which relies on a code division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled and are dynamically
A new approach to the maximum flow problem
 JOURNAL OF THE ACM
, 1988
"... All previously known efficient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the pre ..."
Abstract

Cited by 672 (34 self)
 Add to MetaCart
to be shortest paths. The algorithm and its analysis are simple and intuitive, yet the algorithm runs as fast as any other known method on dense. graphs, achieving an O(n³) time bound on an nvertex graph. By incorporating the dynamic tree data structure of Sleator and Tarjan, we obtain a version
Scalable Recognition with a Vocabulary Tree
 IN CVPR
, 2006
"... A recognition scheme that scales efficiently to a large number of objects is presented. The efficiency and quality is exhibited in a live demonstration that recognizes CDcovers from a database of 40000 images of popular music CD's. The scheme ..."
Abstract

Cited by 1043 (0 self)
 Add to MetaCart
A recognition scheme that scales efficiently to a large number of objects is presented. The efficiency and quality is exhibited in a live demonstration that recognizes CDcovers from a database of 40000 images of popular music CD's. The scheme
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract

Cited by 652 (38 self)
 Add to MetaCart
A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion
An Incremental Algorithm for a Generalization of the ShortestPath Problem
, 1992
"... The grammar problem, a generalization of the singlesource shortestpath problem introduced by Knuth, is to compute the minimumcost derivation of a terminal string from each nonterminal of a given contextfree grammar, with the cost of a derivation being suitably defined. This problem also subsume ..."
Abstract

Cited by 144 (1 self)
 Add to MetaCart
The grammar problem, a generalization of the singlesource shortestpath problem introduced by Knuth, is to compute the minimumcost derivation of a terminal string from each nonterminal of a given contextfree grammar, with the cost of a derivation being suitably defined. This problem also
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 557 (28 self)
 Add to MetaCart
for modelbased clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster
Results 1  10
of
328,083