Results 1  10
of
188,473
Quantile Regression
 JOURNAL OF ECONOMIC PERSPECTIVES—VOLUME 15, NUMBER 4—FALL 2001—PAGES 143–156
, 2001
"... We say that a student scores at the fifth quantile of a standardized exam if he performs better than the proportion � of the reference group of students and worse than the proportion (1–�). Thus, half of students perform better than the median student and half perform worse. Similarly, the quartiles ..."
Abstract

Cited by 937 (10 self)
 Add to MetaCart
as introduced by Koenker and Bassett (1978) seeks to extend these ideas to the estimation of conditional quantile functions—models in which quantiles of the conditional distribution of the response variable are expressed as functions of observed covariates. In Figure 1, we illustrate one approach to this task
Regression quantiles
 Econometrica
, 1978
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 870 (19 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
Estimation and Inference in Econometrics
, 1993
"... The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas o ..."
Abstract

Cited by 1151 (3 self)
 Add to MetaCart
The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas
A Study of CrossValidation and Bootstrap for Accuracy Estimation and Model Selection
 INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE
, 1995
"... We review accuracy estimation methods and compare the two most common methods: crossvalidation and bootstrap. Recent experimental results on artificial data and theoretical results in restricted settings have shown that for selecting a good classifier from a set of classifiers (model selection), te ..."
Abstract

Cited by 1248 (12 self)
 Add to MetaCart
We review accuracy estimation methods and compare the two most common methods: crossvalidation and bootstrap. Recent experimental results on artificial data and theoretical results in restricted settings have shown that for selecting a good classifier from a set of classifiers (model selection
The bootstrap
 In Handbook of Econometrics
, 2001
"... The bootstrap is a method for estimating the distribution of an estimator or test statistic by resampling one’s data. It amounts to treating the data as if they were the population for the purpose of evaluating the distribution of interest. Under mild regularity conditions, the bootstrap yields an a ..."
Abstract

Cited by 175 (2 self)
 Add to MetaCart
The bootstrap is a method for estimating the distribution of an estimator or test statistic by resampling one’s data. It amounts to treating the data as if they were the population for the purpose of evaluating the distribution of interest. Under mild regularity conditions, the bootstrap yields
The Jackknife and the Bootstrap for General Stationary Observations
, 1989
"... this paper we will always consider statistics TN of the form TN (X 1 ; :::; XN ) = T (ae ..."
Abstract

Cited by 399 (2 self)
 Add to MetaCart
this paper we will always consider statistics TN of the form TN (X 1 ; :::; XN ) = T (ae
Nonparametric estimation of average treatment effects under exogeneity: a review
 REVIEW OF ECONOMICS AND STATISTICS
, 2004
"... Recently there has been a surge in econometric work focusing on estimating average treatment effects under various sets of assumptions. One strand of this literature has developed methods for estimating average treatment effects for a binary treatment under assumptions variously described as exogen ..."
Abstract

Cited by 597 (26 self)
 Add to MetaCart
Recently there has been a surge in econometric work focusing on estimating average treatment effects under various sets of assumptions. One strand of this literature has developed methods for estimating average treatment effects for a binary treatment under assumptions variously described
A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood
, 2003
"... The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements. The ..."
Abstract

Cited by 2109 (30 self)
 Add to MetaCart
The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements. The core of this method is a simple hillclimbing algorithm that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast distancebased method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment of the topology and branch lengths, only a few iterations are sufficient to reach an optimum. We used extensive and realistic computer simulations to show that the topological accuracy of this new method is at least as high as that of the existing maximumlikelihood programs and much higher than the performance of distancebased and parsimony approaches. The reduction of computing time is dramatic in comparison with other maximumlikelihood packages, while the likelihood maximization ability tends to be higher. For example, only 12 min were required on a standard personal computer to analyze a data set consisting of 500 rbcL sequences with 1,428 base pairs from plant plastids, thus reaching a speed of the same order as some popular distancebased and parsimony algorithms. This new method is implemented in the PHYML program, which is freely available on our web page:
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We
Results 1  10
of
188,473