Results 1  10
of
668,959
Max PointTolerance Graphs
"... A graph G is a max pointtolerance (MPT) graph if each vertex v of G can be mapped to a pointedinterval (Iv, pv) where Iv is an interval of R and pv ∈ Iv such that uv is an edge of G iff Iu ∩ Iv ⊇ {pu, pv}. MPT graphs model relationships among DNA fragments in genomewide association studies as wel ..."
Abstract
 Add to MetaCart
A graph G is a max pointtolerance (MPT) graph if each vertex v of G can be mapped to a pointedinterval (Iv, pv) where Iv is an interval of R and pv ∈ Iv such that uv is an edge of G iff Iu ∩ Iv ⊇ {pu, pv}. MPT graphs model relationships among DNA fragments in genomewide association studies
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Books in graphs
, 2008
"... A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α) ..."
Abstract

Cited by 2380 (22 self)
 Add to MetaCart
A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α
MaxProp: Routing for VehicleBased DisruptionTolerant Networks
 In Proc. IEEE INFOCOM
, 2006
"... Abstract — Disruptiontolerant networks (DTNs) attempt to route network messages via intermittently connected nodes. Routing in such environments is difficult because peers have little information about the state of the partitioned network and transfer opportunities between peers are of limited dura ..."
Abstract

Cited by 476 (12 self)
 Add to MetaCart
Abstract — Disruptiontolerant networks (DTNs) attempt to route network messages via intermittently connected nodes. Routing in such environments is difficult because peers have little information about the state of the partitioned network and transfer opportunities between peers are of limited
An Experimental Comparison of MinCut/MaxFlow Algorithms for Energy Minimization in Vision
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2001
"... After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in lowlevel vision. The combinatorial optimization literature provides many mincut/maxflow algorithms with different polynomial time compl ..."
Abstract

Cited by 1311 (54 self)
 Add to MetaCart
After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in lowlevel vision. The combinatorial optimization literature provides many mincut/maxflow algorithms with different polynomial time
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Secure Group Communications Using Key Graphs
, 1998
"... Many emerging applications (e.g., teleconference, realtime information services, pay per view, distributed interactive simulation, and collaborative work) are based upon a group communications model, i.e., they require packet delivery from one or more authorized senders to a very large number of au ..."
Abstract

Cited by 552 (17 self)
 Add to MetaCart
management. We formalize the notion of a secure group as a triple (U; K;R) where U denotes a set of users, K a set of keys held by the users, and R a userkey relation. We then introduce key graphs to specify secure groups. For a special class of key graphs, we present three strategies for securely
Fast Planning Through Planning Graph Analysis
 ARTIFICIAL INTELLIGENCE
, 1995
"... We introduce a new approach to planning in STRIPSlike domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest possible partialorder plan, or states that no valid pla ..."
Abstract

Cited by 1165 (3 self)
 Add to MetaCart
We introduce a new approach to planning in STRIPSlike domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest possible partialorder plan, or states that no valid
A Critical Point For Random Graphs With A Given Degree Sequence
, 2000
"... Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 the ..."
Abstract

Cited by 511 (8 self)
 Add to MetaCart
Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0
Results 1  10
of
668,959