Results 1  10
of
4,390,931
From System F to Typed Assembly Language
 ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS
, 1998
"... ..."
Efficient dispersal of information for security, load balancing, and fault tolerance
 Journal of the ACM
, 1989
"... Abstract. An Information Dispersal Algorithm (IDA) is developed that breaks a file F of length L = ( F ( into n pieces F,, 1 5 i 5 n, each of length ( F, 1 = L/m, so that every m pieces suffice for reconstructing F. Dispersal and reconstruction are computationally efficient. The sum of the lengths ..."
Abstract

Cited by 561 (1 self)
 Add to MetaCart
Abstract. An Information Dispersal Algorithm (IDA) is developed that breaks a file F of length L = ( F ( into n pieces F,, 1 5 i 5 n, each of length ( F, 1 = L/m, so that every m pieces suffice for reconstructing F. Dispersal and reconstruction are computationally efficient. The sum of the lengths
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract

Cited by 652 (38 self)
 Add to MetaCart
of objects and split management, whF h keep th Mtree always balanced  severalheralvFV split alternatives are considered and experimentally evaluated. Algorithd for similarity (range and knearest neigh bors) queries are also described. Results from extensive experimentationwith a prototype system
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Fibonacci Heaps and Their Uses in Improved Network . . .
, 1987
"... In this paper we develop a new data structure for implementing heaps (priority queues). Our structure, Fibonacci heaps (abbreviated Fheaps), extends the binomial queues proposed by Vuillemin and studied further by Brown. Fheaps support arbitrary deletion from an nitem heap in qlogn) amortized t ..."
Abstract

Cited by 746 (18 self)
 Add to MetaCart
time and all other standard heap operations in o ( 1) amortized time. Using Fheaps we are able to obtain improved running times for several network optimization algorithms. In particular, we obtain the following worstcase bounds, where n is the number of vertices and m the number of edges
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract

Cited by 2837 (11 self)
 Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a
The space complexity of approximating the frequency moments
 JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 1996
"... The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly, ..."
Abstract

Cited by 855 (12 self)
 Add to MetaCart
, it turns out that the numbers F0, F1 and F2 can be approximated in logarithmic space, whereas the approximation of Fk for k ≥ 6 requires nΩ(1) space. Applications to data bases are mentioned as well.
Logical foundations of objectoriented and framebased languages
 JOURNAL OF THE ACM
, 1995
"... We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods, ..."
Abstract

Cited by 880 (64 self)
 Add to MetaCart
We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods
AN n 5/2 ALGORITHM FOR MAXIMUM MATCHINGS IN BIPARTITE GRAPHS
, 1973
"... The present paper shows how to construct a maximum matching in a bipartite graph with n vertices and m edges in a number of computation steps proportional to (m + n)x/. ..."
Abstract

Cited by 712 (1 self)
 Add to MetaCart
The present paper shows how to construct a maximum matching in a bipartite graph with n vertices and m edges in a number of computation steps proportional to (m + n)x/.
Results 1  10
of
4,390,931