Results 1  10
of
59,787
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
Pegasos: Primal Estimated subgradient solver for SVM
"... We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract

Cited by 531 (21 self)
 Add to MetaCart
We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
Learning LongTerm Dependencies with Gradient Descent is Difficult
 TO APPEAR IN THE SPECIAL ISSUE ON RECURRENT NETWORKS OF THE IEEE TRANSACTIONS ON NEURAL NETWORKS
"... Recurrent neural networks can be used to map input sequences to output sequences, such as for recognition, production or prediction problems. However, practical difficulties have been reported in training recurrent neural networks to perform tasks in which the temporal contingencies present in th ..."
Abstract

Cited by 374 (35 self)
 Add to MetaCart
in the input/output sequences span long intervals. We showwhy gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases. These results expose a tradeoff between efficient learning by gradient descent and latching on information
Proximal Newtontype methods for convex optimization
"... We seek to solve convex optimization problems in composite form: minimize x∈R n f(x): = g(x) + h(x), where g is convex and continuously differentiable and h: R n → R is a convex but not necessarily differentiable function whose proximal mapping can be evaluated efficiently. We derive a generalizatio ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
generalization of Newtontype methods to handle such convex but nonsmooth objective functions. We prove such methods are globally convergent and achieve superlinear rates of convergence in the vicinity of an optimal solution. We also demonstrate the performance of these methods using problems of relevance
A Limited Memory Algorithm for Bound Constrained Optimization
 SIAM Journal on Scientific Computing
, 1994
"... An algorithm for solving large nonlinear optimization problems with simple bounds is described. ..."
Abstract

Cited by 557 (9 self)
 Add to MetaCart
An algorithm for solving large nonlinear optimization problems with simple bounds is described.
Particle swarm optimization
, 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract

Cited by 3535 (22 self)
 Add to MetaCart
eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described
Optimization Flow Control, I: Basic Algorithm and Convergence
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract

Cited by 690 (64 self)
 Add to MetaCart
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm
PROXIMAL NEWTONTYPE METHODS FOR MINIMIZING COMPOSITE FUNCTIONS
"... Abstract. We generalize Newtontype methods for minimizing smooth functions to handle a sum of two convex functions: a smooth function and a nonsmooth function with a simple proximal mapping. We show that the resulting proximal Newtontype methods inherit the desirable convergence behavior of Newton ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
Abstract. We generalize Newtontype methods for minimizing smooth functions to handle a sum of two convex functions: a smooth function and a nonsmooth function with a simple proximal mapping. We show that the resulting proximal Newtontype methods inherit the desirable convergence behavior
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical
Results 1  10
of
59,787