Results 1  10
of
1,007,152
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 500 (0 self)
 Add to MetaCart
number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a new centrality measure that identifies those vertices that occupy central positions within the communities to which they belong
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized
Interprocedural Slicing Using Dependence Graphs
 ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS
, 1990
"... ... This paper concerns the problem of interprocedural slicinggenerating a slice of an entire program, where the slice crosses the boundaries of procedure calls. To solve this problem, we introduce a new kind of graph to represent programs, called a system dependence graph, which extends previou ..."
Abstract

Cited by 822 (85 self)
 Add to MetaCart
... This paper concerns the problem of interprocedural slicinggenerating a slice of an entire program, where the slice crosses the boundaries of procedure calls. To solve this problem, we introduce a new kind of graph to represent programs, called a system dependence graph, which extends
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Fusion, Propagation, and Structuring in Belief Networks
 ARTIFICIAL INTELLIGENCE
, 1986
"... Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used to repre ..."
Abstract

Cited by 482 (8 self)
 Add to MetaCart
Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used
Efficient similarity search in sequence databases
, 1994
"... We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong. Anot ..."
Abstract

Cited by 505 (21 self)
 Add to MetaCart
We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled
Analysis, Modeling and Generation of SelfSimilar VBR Video Traffic
, 1994
"... We present a detailed statistical analysis of a 2hour long empirical sample of VBR video. The sample was obtained by applying a simple intraframe video compression code to an action movie. The main findings of our analysis are (1) the tail behavior of the marginal bandwidth distribution can be accu ..."
Abstract

Cited by 546 (6 self)
 Add to MetaCart
be accurately described using "heavytailed" distributions (e.g., Pareto); (2) the autocorrelation of the VBR video sequence decays hyperbolically (equivalent to longrange dependence) and can be modeled using selfsimilar processes. We combine our findings in a new (nonMarkovian) source model
Results 1  10
of
1,007,152