Results 1  10
of
17,817
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 780 (22 self)
 Add to MetaCart
problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied
Approximate graph coloring by semidefinite programming
 Proc. 35 th IEEE FOCS, IEEE
, 1994
"... a coloring is called the chromatic number of�, and is usually denoted by��.Determining the chromatic number of a graph is known to be NPhard (cf. [19]). Besides its theoretical significance as a canonical NPhard problem, graph coloring arises naturally in a variety of applications such as register ..."
Abstract

Cited by 212 (6 self)
 Add to MetaCart
work of Goemans and Williamson who used an algorithm for semidefinite optimization problems, which generalize linear programs, to obtain improved approximations for the MAX CUT and MAX 2SAT problems. An intriguing outcome of our work is a duality relationship established between the value
Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization
, 2000
"... ..."
SDPT3  a MATLAB software package for semidefinite programming
 OPTIMIZATION METHODS AND SOFTWARE
, 1999
"... This software package is a Matlab implementation of infeasible pathfollowing algorithms for solving standard semidefinite programming (SDP) problems. Mehrotratype predictorcorrector variants are included. Analogous algorithms for the homogeneous formulation of the standard SDP problem are also imp ..."
Abstract

Cited by 362 (17 self)
 Add to MetaCart
This software package is a Matlab implementation of infeasible pathfollowing algorithms for solving standard semidefinite programming (SDP) problems. Mehrotratype predictorcorrector variants are included. Analogous algorithms for the homogeneous formulation of the standard SDP problem are also
An InteriorPoint Method for Semidefinite Programming
, 2005
"... We propose a new interior point based method to minimize a linear function of a matrix variable subject to linear equality and inequality constraints over the set of positive semidefinite matrices. We show that the approach is very efficient for graph bisection problems, such as maxcut. Other appli ..."
Abstract

Cited by 255 (18 self)
 Add to MetaCart
We propose a new interior point based method to minimize a linear function of a matrix variable subject to linear equality and inequality constraints over the set of positive semidefinite matrices. We show that the approach is very efficient for graph bisection problems, such as maxcut. Other
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract

Cited by 728 (1 self)
 Add to MetaCart
surfaces are found by solving a linearly constrained quadratic programming problem. This optimization problem is challenging because the quadratic form is completely dense and the memory requirements grow with the square of the number of data points. We present a decomposition algorithm that guarantees
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
likelihoods, marginal probabilities and most probable configurations. We describe how a wide varietyof algorithms — among them sumproduct, cluster variational methods, expectationpropagation, mean field methods, maxproduct and linear programming relaxation, as well as conic programming relaxations — can
Results 1  10
of
17,817