Results 1  10
of
17,579
FarthestPolygon Voronoi Diagrams
, 2007
"... Given a family of k disjoint connected polygonal sites of total complexity n, we consider the farthestsite Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(n log 3 n) time algori ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Given a family of k disjoint connected polygonal sites of total complexity n, we consider the farthestsite Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(n log 3 n) time
Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams
 ACM Tmns. Graph
, 1985
"... The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms ar ..."
Abstract

Cited by 543 (11 self)
 Add to MetaCart
The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms
Voronoi diagrams  a survey of a fundamental geometric data structure
 ACM COMPUTING SURVEYS
, 1991
"... This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. ..."
Abstract

Cited by 753 (5 self)
 Add to MetaCart
This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development
Surface Reconstruction by Voronoi Filtering
 Discrete and Computational Geometry
, 1998
"... We give a simple combinatorial algorithm that computes a piecewiselinear approximation of a smooth surface from a finite set of sample points. The algorithm uses Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algorithm correct by showing that for densely sampled ..."
Abstract

Cited by 418 (15 self)
 Add to MetaCart
We give a simple combinatorial algorithm that computes a piecewiselinear approximation of a smooth surface from a finite set of sample points. The algorithm uses Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algorithm correct by showing that for densely sampled
A New VoronoiBased Surface Reconstruction Algorithm
, 2002
"... We describe our experience with a new algorithm for the reconstruction of surfaces from unorganized sample points in R³. The algorithm is the first for this problem with provable guarantees. Given a “good sample” from a smooth surface, the output is guaranteed to be topologically correct and converg ..."
Abstract

Cited by 422 (9 self)
 Add to MetaCart
, rather than approximates, the input points. Our algorithm is based on the threedimensional Voronoi diagram. Given a good program for this fundamental subroutine, the algorithm is quite easy to implement.
Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware
, 1999
"... We present a new approach for computing generalized 2D and 3D Voronoi diagrams using interpolationbased polygon rasterization hardware. We compute a discrete Voronoi diagram by rendering a three dimensional distance mesh for each Voronoi site. The polygonal mesh is a boundederror approximation of ..."
Abstract

Cited by 233 (26 self)
 Add to MetaCart
segments, polygons, polyhedra, curves, and curved surfaces in 2D and 3D. We generalize to weighted and farthestsite Voronoi diagrams, and present efficient techniques for computing the Voronoi boundaries, Voronoi neighbors, and the Delaunay triangulation of points. We also show how to adaptively refine
Multiresolution Analysis of Arbitrary Meshes
, 1995
"... In computer graphics and geometric modeling, shapes are often represented by triangular meshes. With the advent of laser scanning systems, meshes of extreme complexity are rapidly becoming commonplace. Such meshes are notoriously expensive to store, transmit, render, and are awkward to edit. Multire ..."
Abstract

Cited by 605 (16 self)
 Add to MetaCart
In computer graphics and geometric modeling, shapes are often represented by triangular meshes. With the advent of laser scanning systems, meshes of extreme complexity are rapidly becoming commonplace. Such meshes are notoriously expensive to store, transmit, render, and are awkward to edit. Multiresolution analysis offers a simple, unified, and theoretically sound approach to dealing with these problems. Lounsbery et al. have recently developed a technique for creating multiresolution representations for a restricted class of meshes with subdivision connectivity. Unfortunately, meshes encountered in practice typically do not meet this requirement. In this paper we present a method for overcoming the subdivision connectivity restriction, meaning that completely arbitrary meshes can now be converted to multiresolution form. The method is based on the approximation of an arbitrary initial mesh M by a mesh M that has subdivision connectivity and is guaranteed to be within a specified tolerance. The key
Results 1  10
of
17,579