Results 1  10
of
234,935
Essentially Optimal Robust Secret Sharing with Maximal Corruptions
, 2015
"... In a toutofn robust secret sharing scheme, a secret message is shared among n parties who can reconstruct the message by combining their shares. An adversary can adaptively corrupt up to t of the parties, get their shares, and modify them arbitrarily. The scheme should satisfy privacy, meaning th ..."
Abstract
 Add to MetaCart
of parties n, and the prior stateoftheart scheme due to Cevallos et al. (EUROCRYPT ’12) achieves m+ Õ(k + n). In this work, we construct the first robust secret sharing scheme in the maximal corruption setting with n = 2t+ 1, that avoids the linear dependence between share size and the number of
Robust Monte Carlo Localization for Mobile Robots
, 2001
"... Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), whi ..."
Abstract

Cited by 826 (88 self)
 Add to MetaCart
), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called MixtureMCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm
Grid Information Services for Distributed Resource Sharing
, 2001
"... Grid technologies enable largescale sharing of resources within formal or informal consortia of individuals and/or institutions: what are sometimes called virtual organizations. In these settings, the discovery, characterization, and monitoring of resources, services, and computations are challengi ..."
Abstract

Cited by 703 (52 self)
 Add to MetaCart
Grid technologies enable largescale sharing of resources within formal or informal consortia of individuals and/or institutions: what are sometimes called virtual organizations. In these settings, the discovery, characterization, and monitoring of resources, services, and computations
Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm
 IEEE TRANSACTIONS ON MEDICAL. IMAGING
, 2001
"... The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogrambased model, the FM has an intrinsic limi ..."
Abstract

Cited by 619 (14 self)
 Add to MetaCart
methods are limited to using MRF as a general prior in an FM modelbased approach. To fit the HMRF model, an EM algorithm is used. We show that by incorporating both the HMRF model and the EM algorithm into a HMRFEM framework, an accurate and robust segmentation can be achieved. More importantly
Optimal Capital Structure, Endogenous Bankruptcy, and the Term Structure of Credit Spreads
 THE JOURNAL OF FINANCE, VOL. 51, NO. 3, PAPERS AND PROCEEDINGS OF THE FIFTYSIXTH
, 1996
"... ..."
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Bundle Adjustment  A Modern Synthesis
 VISION ALGORITHMS: THEORY AND PRACTICE, LNCS
, 2000
"... This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics c ..."
Abstract

Cited by 555 (12 self)
 Add to MetaCart
covered include: the choice of cost function and robustness; numerical optimization including sparse Newton methods, linearly convergent approximations, updating and recursive methods; gauge (datum) invariance; and quality control. The theory is developed for general robust cost functions rather than
Dynamo: A Transparent Dynamic Optimization System
 ACM SIGPLAN NOTICES
, 2000
"... We describe the design and implementation of Dynamo, a software dynamic optimization system that is capable of transparently improving the performance of a native instruction stream as it executes on the processor. The input native instruction stream to Dynamo can be dynamically generated (by a JIT ..."
Abstract

Cited by 479 (2 self)
 Add to MetaCart
We describe the design and implementation of Dynamo, a software dynamic optimization system that is capable of transparently improving the performance of a native instruction stream as it executes on the processor. The input native instruction stream to Dynamo can be dynamically generated (by a JIT
Quantization Index Modulation: A Class of Provably Good Methods for Digital Watermarking and Information Embedding
 IEEE TRANS. ON INFORMATION THEORY
, 1999
"... We consider the problem of embedding one signal (e.g., a digital watermark), within another "host" signal to form a third, "composite" signal. The embedding is designed to achieve efficient tradeoffs among the three conflicting goals of maximizing informationembedding rate, mini ..."
Abstract

Cited by 495 (15 self)
 Add to MetaCart
, minimizing distortion between the host signal and composite signal, and maximizing the robustness of the embedding. We introduce new classes of embedding methods, termed quantization index modulation (QIM) and distortioncompensated QIM (DCQIM), and develop convenient realizations in the form of what we
Results 1  10
of
234,935