Results 1  10
of
21,912
A theory of timed automata
, 1999
"... Model checking is emerging as a practical tool for automated debugging of complex reactive systems such as embedded controllers and network protocols (see [23] for a survey). Traditional techniques for model checking do not admit an explicit modeling of time, and are thus, unsuitable for analysis of ..."
Abstract

Cited by 2651 (32 self)
 Add to MetaCart
of realtime systems whose correctness depends on relative magnitudes of different delays. Consequently, timed automata [7] were introduced as a formal notation to model the behavior of realtime systems. Its definition provides a simple way to annotate statetransition graphs with timing constraints
WaitFree Synchronization
 ACM Transactions on Programming Languages and Systems
, 1993
"... A waitfree implementation of a concurrent data object is one that guarantees that any process can complete any operation in a finite number of steps, regardless of the execution speeds of the other processes. The problem of constructing a waitfree implementation of one data object from another lie ..."
Abstract

Cited by 873 (28 self)
 Add to MetaCart
A waitfree implementation of a concurrent data object is one that guarantees that any process can complete any operation in a finite number of steps, regardless of the execution speeds of the other processes. The problem of constructing a waitfree implementation of one data object from another lies at the heart of much recent work in concurrent algorithms, concurrent data structures, and multiprocessor architectures. In the first part of this paper, we introduce a simple and general technique, based on reduction to a consensus protocol, for proving statements of the form "there is no waitfree implementation of X by Y ." We derive a hierarchy of objects such that no object at one level has a waitfree implementation in terms of objects at lower levels. In particular, we show that atomic read/write registers, which have been the focus of much recent attention, are at the bottom of the hierarchy: they cannot be used to construct waitfree implementations of many simple and familiar da...
The synchronous dataflow programming language LUSTRE
 Proceedings of the IEEE
, 1991
"... This paper describes the language Lustre, which is a dataflow synchronous language, designed for programming reactive systems  such as automatic control and monitoring systems  as well as for describing hardware. The dataflow aspect of Lustre makes it very close to usual description tools in t ..."
Abstract

Cited by 647 (53 self)
 Add to MetaCart
This paper describes the language Lustre, which is a dataflow synchronous language, designed for programming reactive systems  such as automatic control and monitoring systems  as well as for describing hardware. The dataflow aspect of Lustre makes it very close to usual description tools
Symbolic Model Checking for Realtime Systems
 INFORMATION AND COMPUTATION
, 1992
"... We describe finitestate programs over realnumbered time in a guardedcommand language with realvalued clocks or, equivalently, as finite automata with realvalued clocks. Model checking answers the question which states of a realtime program satisfy a branchingtime specification (given in an ..."
Abstract

Cited by 574 (50 self)
 Add to MetaCart
We describe finitestate programs over realnumbered time in a guardedcommand language with realvalued clocks or, equivalently, as finite automata with realvalued clocks. Model checking answers the question which states of a realtime program satisfy a branchingtime specification (given
UPPAAL in a Nutshell
, 1997
"... . This paper presents the overall structure, the design criteria, and the main features of the tool box Uppaal. It gives a detailed user guide which describes how to use the various tools of Uppaal version 2.02 to construct abstract models of a realtime system, to simulate its dynamical behavior, ..."
Abstract

Cited by 663 (49 self)
 Add to MetaCart
. This paper presents the overall structure, the design criteria, and the main features of the tool box Uppaal. It gives a detailed user guide which describes how to use the various tools of Uppaal version 2.02 to construct abstract models of a realtime system, to simulate its dynamical behavior, to specify and verify its safety and bounded liveness properties in terms of its model. In addition, the paper also provides a short review on casestudies where Uppaal is applied, as well as references to its theoretical foundation. 1 Introduction Uppaal is a tool box for modeling, simulation and verification of realtime systems, based on constraintsolving and onthefly techniques, developed jointly by Uppsala University and Aalborg University. It is appropriate for systems that can be modeled as a collection of nondeterministic processes with finite control structure and realvalued clocks, communicating through channels and (or) shared variables [34, 26]. Typical application areas in...
Temporal and modal logic
 HANDBOOK OF THEORETICAL COMPUTER SCIENCE
, 1995
"... We give a comprehensive and unifying survey of the theoretical aspects of Temporal and modal logic. ..."
Abstract

Cited by 1300 (17 self)
 Add to MetaCart
We give a comprehensive and unifying survey of the theoretical aspects of Temporal and modal logic.
Alternatingtime Temporal Logic
 Journal of the ACM
, 1997
"... Temporal logic comes in two varieties: lineartime temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branchingtime temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general var ..."
Abstract

Cited by 615 (55 self)
 Add to MetaCart
Temporal logic comes in two varieties: lineartime temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branchingtime temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general variety of temporal logic: alternatingtime temporal logic offers selective quantification over those paths that are possible outcomes of games, such as the game in which the system and the environment alternate moves. While lineartime and branchingtime logics are natural specification languages for closed systems, alternatingtime logics are natural specification languages for open systems. For example, by preceding the temporal operator "eventually" with a selective path quantifier, we can specify that in the game between the system and the environment, the system has a strategy to reach a certain state. Also the problems of receptiveness, realizability, and controllability can be formulated as modelchecking problems for alternatingtime formulas.
Particle swarm optimization
, 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract

Cited by 3535 (22 self)
 Add to MetaCart
eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications, including nonlinear function optimization and neural network training, are proposed. The relationships between particle swarm optimization and both artificial life and genetic algorithms are described, 1
Results 1  10
of
21,912