Results 1  10
of
3,833,558
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a long time, ‘variational ’ problems have been identified mostly with the ‘calculus of variations’. In that venerable subject, built around the minimization of integral functionals, constraints were relatively simple and much of the focus was on infinitedimensional function spaces. A major theme was the exploration of variations around a point, within the bounds imposed by the constraints, in order to help characterize solutions and portray them in terms of ‘variational principles’. Notions of perturbation, approximation and even generalized differentiability were extensively investigated. Variational theory progressed also to the study of socalled stationary points, critical points, and other indications of singularity that a point might have relative to its neighbors, especially in association with existence theorems for differential equations.
The fundamental properties of natural numbers
 Journal of Formalized Mathematics
, 1989
"... Summary. Some fundamental properties of addition, multiplication, order relations, exact division, the remainder, divisibility, the least common multiple, the greatest common divisor are presented. A proof of Euclid algorithm is also given. MML Identifier:NAT_1. WWW:http://mizar.org/JFM/Vol1/nat_1.h ..."
Abstract

Cited by 682 (76 self)
 Add to MetaCart
. The scheme Ind concerns a unary predicate P, and states that: For every natural number k holdsP[k] provided the parameters satisfy the following conditions: • P[0], and • For every natural number k such thatP[k] holdsP[k+1]. The scheme Nat Ind concerns a unary predicateP, and states that: For every natural
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
Basic Properties of Real Numbers
 Journal of Formalized Mathematics
, 1989
"... this paper. A real number is an element of R ..."
The ordinal numbers
 Journal of Formalized Mathematics
, 1989
"... Summary. We present the choice function rule in the beginning of the article. In the main part of the article we formalize the base of cardinal theory. In the first section we introduce the concept of cardinal numbers and order relations between them. We present here CantorBernstein theorem and oth ..."
Abstract

Cited by 722 (70 self)
 Add to MetaCart
and other properties of order relation of cardinals. In the second section we show that every set has cardinal number equipotence to it. We introduce notion of alephs and we deal with the concept of finite set. At the end of the article we show two schemes of cardinal induction. Some definitions are based
Exact Matrix Completion via Convex Optimization
, 2008
"... We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfe ..."
Abstract

Cited by 860 (27 self)
 Add to MetaCart
by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold
Assigned Numbers
 STD 2, RFC 1700, USC/Information Sciences Institute
, 1994
"... Status of this Memo ..."
Shallow Parsing with Conditional Random Fields
, 2003
"... Conditional random fields for sequence labeling offer advantages over both generative models like HMMs and classifiers applied at each sequence position. Among sequence labeling tasks in language processing, shallow parsing has received much attention, with the development of standard evaluati ..."
Abstract

Cited by 575 (8 self)
 Add to MetaCart
Conditional random fields for sequence labeling offer advantages over both generative models like HMMs and classifiers applied at each sequence position. Among sequence labeling tasks in language processing, shallow parsing has received much attention, with the development of standard
Results 1  10
of
3,833,558