Results 1  10
of
1,906,121
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 780 (22 self)
 Add to MetaCart
is contained in the socalled kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input spaceclassical model selection
The University of Florida sparse matrix collection
 NA DIGEST
, 1997
"... The University of Florida Sparse Matrix Collection is a large, widely available, and actively growing set of sparse matrices that arise in real applications. Its matrices cover a wide spectrum of problem domains, both those arising from problems with underlying 2D or 3D geometry (structural enginee ..."
Abstract

Cited by 538 (19 self)
 Add to MetaCart
The University of Florida Sparse Matrix Collection is a large, widely available, and actively growing set of sparse matrices that arise in real applications. Its matrices cover a wide spectrum of problem domains, both those arising from problems with underlying 2D or 3D geometry (structural
DecisionTheoretic Planning: Structural Assumptions and Computational Leverage
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract

Cited by 510 (4 self)
 Add to MetaCart
related methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies
PseudoRandom Generation from OneWay Functions
 PROC. 20TH STOC
, 1988
"... Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom gene ..."
Abstract

Cited by 887 (22 self)
 Add to MetaCart
Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom
Generative communication in Linda
 ACM Transactions on Programming Languages and Systems
, 1985
"... Generative communication is the basis of a new distributed programming langauge that is intended for systems programming in distributed settings generally and on integrated network computers in particular. It differs from previous interprocess communication models in specifying that messages be adde ..."
Abstract

Cited by 1171 (2 self)
 Add to MetaCart
Generative communication is the basis of a new distributed programming langauge that is intended for systems programming in distributed settings generally and on integrated network computers in particular. It differs from previous interprocess communication models in specifying that messages
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
Generation and Synchronous TreeAdjoining Grammars
, 1990
"... Treeadjoining grammars (TAG) have been proposed as a formalism for generation based on the intuition that the extended domain of syntactic locality that TAGs provide should aid in localizing semantic dependencies as well, in turn serving as an aid to generation from semantic representations. We dem ..."
Abstract

Cited by 772 (43 self)
 Add to MetaCart
advocated for generation gram mars as a computational aid is seen to be an inherent property of synchronous TAGs.
Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora
, 1997
"... ..."
Inverse Acoustic and Electromagnetic Scattering Theory, Second Edition
, 1998
"... Abstract. This paper is a survey of the inverse scattering problem for timeharmonic acoustic and electromagnetic waves at fixed frequency. We begin by a discussion of “weak scattering ” and Newtontype methods for solving the inverse scattering problem for acoustic waves, including a brief discussi ..."
Abstract

Cited by 1072 (45 self)
 Add to MetaCart
Abstract. This paper is a survey of the inverse scattering problem for timeharmonic acoustic and electromagnetic waves at fixed frequency. We begin by a discussion of “weak scattering ” and Newtontype methods for solving the inverse scattering problem for acoustic waves, including a brief
Algorithms for Nonnegative Matrix Factorization
 In NIPS
, 2001
"... Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown to minim ..."
Abstract

Cited by 1230 (5 self)
 Add to MetaCart
Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown
Results 1  10
of
1,906,121