Results 1  10
of
1,420,251
Checking Computations in Polylogarithmic Time
, 1991
"... . Motivated by Manuel Blum's concept of instance checking, we consider new, very fast and generic mechanisms of checking computations. Our results exploit recent advances in interactive proof protocols [LFKN92], [Sha92], and especially the MIP = NEXP protocol from [BFL91]. We show that every no ..."
Abstract

Cited by 274 (11 self)
 Add to MetaCart
in polylogarithmic Monte Carlo time; and (iii) a witness satisfying S 0 can be computed in polynomial time from a witness satisfying S. Here the instance and the description of S have to be provided in errorcorrecting code (since the checker will not notice slight changes). A modification of the MIP proof
Symbolic Model Checking for Realtime Systems
 INFORMATION AND COMPUTATION
, 1992
"... We describe finitestate programs over realnumbered time in a guardedcommand language with realvalued clocks or, equivalently, as finite automata with realvalued clocks. Model checking answers the question which states of a realtime program satisfy a branchingtime specification (given in an ..."
Abstract

Cited by 574 (50 self)
 Add to MetaCart
We describe finitestate programs over realnumbered time in a guardedcommand language with realvalued clocks or, equivalently, as finite automata with realvalued clocks. Model checking answers the question which states of a realtime program satisfy a branchingtime specification (given
LowDensity ParityCheck Codes
, 1963
"... Preface The Noisy Channel Coding Theorem discovered by C. E. Shannon in 1948 offered communication engineers the possibility of reducing error rates on noisy channels to negligible levels without sacrificing data rates. The primary obstacle to the practical use of this theorem has been the equipment ..."
Abstract

Cited by 1349 (1 self)
 Add to MetaCart
the equipment complexity and the computation time required to decode the noisy received data.
Symbolic Model Checking without BDDs
, 1999
"... Symbolic Model Checking [3, 14] has proven to be a powerful technique for the verification of reactive systems. BDDs [2] have traditionally been used as a symbolic representation of the system. In this paper we show how boolean decision procedures, like Stalmarck's Method [16] or the Davis ..."
Abstract

Cited by 910 (74 self)
 Add to MetaCart
Symbolic Model Checking [3, 14] has proven to be a powerful technique for the verification of reactive systems. BDDs [2] have traditionally been used as a symbolic representation of the system. In this paper we show how boolean decision procedures, like Stalmarck's Method [16] or the Davis
Symbolic Model Checking: 10^20 States and Beyond
, 1992
"... Many different methods have been devised for automatically verifying finite state systems by examining stategraph models of system behavior. These methods all depend on decision procedures that explicitly represent the state space using a list or a table that grows in proportion to the number of st ..."
Abstract

Cited by 753 (40 self)
 Add to MetaCart
Binary Decision Diagrams (Bryant, R. E., 1986, IEEE Trans. Comput. C35) to represent relations and formulas. We then show how our new MuCalculus model checking algorithm can be used to derive efficient decision procedures for CTL model checking, satistiability of lineartime temporal logic formulas
A theory of timed automata
, 1999
"... Model checking is emerging as a practical tool for automated debugging of complex reactive systems such as embedded controllers and network protocols (see [23] for a survey). Traditional techniques for model checking do not admit an explicit modeling of time, and are thus, unsuitable for analysis of ..."
Abstract

Cited by 2651 (32 self)
 Add to MetaCart
Model checking is emerging as a practical tool for automated debugging of complex reactive systems such as embedded controllers and network protocols (see [23] for a survey). Traditional techniques for model checking do not admit an explicit modeling of time, and are thus, unsuitable for analysis
Alternatingtime Temporal Logic
 Journal of the ACM
, 1997
"... Temporal logic comes in two varieties: lineartime temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branchingtime temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general var ..."
Abstract

Cited by 615 (55 self)
 Add to MetaCart
a certain state. Also the problems of receptiveness, realizability, and controllability can be formulated as modelchecking problems for alternatingtime formulas.
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
The Unix TimeSharing System
 Communications of the ACM
, 1974
"... Unix is a generalpurpose, multiuser, interactive operating system for the larger Digital Equipment Corporation PDP11 and the Interdata 8/32 computers. It offers a number of features seldom found even in larger operating systems, including i A hierarchical file system incorporating demountable vol ..."
Abstract

Cited by 536 (14 self)
 Add to MetaCart
Unix is a generalpurpose, multiuser, interactive operating system for the larger Digital Equipment Corporation PDP11 and the Interdata 8/32 computers. It offers a number of features seldom found even in larger operating systems, including i A hierarchical file system incorporating demountable
Internet time synchronization: The network time protocol
, 1989
"... This memo describes the Network Time Protocol (NTP) designed to distribute time information in a large, diverse internet system operating at speeds from mundane to lightwave. It uses a returnabletime architecture in which a distributed subnet of time servers operating in a selforganizing, hierarchi ..."
Abstract

Cited by 617 (15 self)
 Add to MetaCart
This memo describes the Network Time Protocol (NTP) designed to distribute time information in a large, diverse internet system operating at speeds from mundane to lightwave. It uses a returnabletime architecture in which a distributed subnet of time servers operating in a self
Results 1  10
of
1,420,251