Results 1  10
of
1,751,515
Some NPcomplete Geometric Problems
"... We show that the STEINER TREE problem and TRAVELING SALESMAN problem for points in the plane are NPcomplete when distances are measured either by the rectilinear (Manhattan) metric or by a natural discretized version of the Euclidean metric. Our proofs also indicate that the problems are NPhard i ..."
Abstract

Cited by 99 (1 self)
 Add to MetaCart
We show that the STEINER TREE problem and TRAVELING SALESMAN problem for points in the plane are NPcomplete when distances are measured either by the rectilinear (Manhattan) metric or by a natural discretized version of the Euclidean metric. Our proofs also indicate that the problems are NP
Using Genetic Algorithms to Solve NPComplete Problems
, 1989
"... A strategy for using Genetic Algorithms (GAs) to solve NPcomplete problems is presented. The key aspect of the approach taken is to exploit the observation that, although all NPcomplete problems are equally difficult in a general computational sense, some have much better GA representations than o ..."
Abstract

Cited by 148 (5 self)
 Add to MetaCart
others, leading to much more successful use of GAs on some NPcomplete problems than on others. Since any NPcomplete problem can be mapped into any other one in polynomial time, the strategy described here consists of identifying a canonical NPcomplete problem on which GAs work well, and solving other
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 681 (1 self)
 Add to MetaCart
It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract

Cited by 2837 (11 self)
 Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a
NPcomplete problems and physical reality
 ACM SIGACT News Complexity Theory Column, March. ECCC
, 2005
"... Can NPcomplete problems be solved efficiently in the physical universe? I survey proposals including soap bubbles, protein folding, quantum computing, quantum advice, quantum adiabatic algorithms, quantummechanical nonlinearities, hidden variables, relativistic time dilation, analog computing, Mal ..."
Abstract

Cited by 57 (6 self)
 Add to MetaCart
Can NPcomplete problems be solved efficiently in the physical universe? I survey proposals including soap bubbles, protein folding, quantum computing, quantum advice, quantum adiabatic algorithms, quantummechanical nonlinearities, hidden variables, relativistic time dilation, analog computing
Some NPcomplete Geometric Problems
 In 8th ACM Symposium on Theory of Computing, STOC
, 1976
"... We show that the STEINER TREE problem and TRAVELING SALESMAN problem for points in the plane are NPcomplete when distances are measured either by the rectilinear (Manhattan) metric or by a natural discretized version of the Euclidean metric. Our proofs also indicate that the problems are NPhard if ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
We show that the STEINER TREE problem and TRAVELING SALESMAN problem for points in the plane are NPcomplete when distances are measured either by the rectilinear (Manhattan) metric or by a natural discretized version of the Euclidean metric. Our proofs also indicate that the problems are NP
Parameterized Complexity
, 1998
"... the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs ..."
Abstract

Cited by 1218 (75 self)
 Add to MetaCart
the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs
An average case NPcomplete graph problem
 arXiv:cs.CC/0112001
"... NPcomplete problems should be hard on some instances but these may be extremely rare. On generic instances many such problems, especially related to random graphs, have been proven easy. We show the intractability of random instances of a graph coloring problem: this graph problem is hard on averag ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
NPcomplete problems should be hard on some instances but these may be extremely rare. On generic instances many such problems, especially related to random graphs, have been proven easy. We show the intractability of random instances of a graph coloring problem: this graph problem is hard
The complexity of theoremproving procedures
 IN STOC
, 1971
"... It is shown that any recognition problem solved by a polynomial timebounded nondeterministic Turing machine can be “reduced” to the problem of determining whether a given propositional formula is a tautology. Here “reduced ” means, roughly speaking, that the first problem can be solved deterministi ..."
Abstract

Cited by 1057 (4 self)
 Add to MetaCart
It is shown that any recognition problem solved by a polynomial timebounded nondeterministic Turing machine can be “reduced” to the problem of determining whether a given propositional formula is a tautology. Here “reduced ” means, roughly speaking, that the first problem can be solved
Quantum complexity theory
 in Proc. 25th Annual ACM Symposium on Theory of Computing, ACM
, 1993
"... Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This constructi ..."
Abstract

Cited by 582 (5 self)
 Add to MetaCart
the modern (complexity theoretic) formulation of the Church–Turing thesis. We show the existence of a problem, relative to an oracle, that can be solved in polynomial time on a quantum Turing machine, but requires superpolynomial time on a boundederror probabilistic Turing machine, and thus not in the class
Results 1  10
of
1,751,515