Results 1  10
of
99,298
An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles in the Plane
, 1988
"... We give an algorithm to compute a (Euclidean) shortest path in a polygon with h holes and a total of n vertices. The algorithm uses O(n) space and requires O(n + h² log n) time. ..."
Abstract

Cited by 50 (2 self)
 Add to MetaCart
We give an algorithm to compute a (Euclidean) shortest path in a polygon with h holes and a total of n vertices. The algorithm uses O(n) space and requires O(n + h² log n) time.
An Optimal Algorithm for Euclidean Shortest Paths in the Plane
 SIAM J. Comput
, 1997
"... We propose an optimaltime algorithm for a classical problem in plane computational geometry: computing a shortest path between two points in the presence of polygonal obstacles. Our algorithm runs in worstcase time O(n log n) and requires O(n log n) space, where n is the total number of vertice ..."
Abstract

Cited by 116 (2 self)
 Add to MetaCart
of vertices in the obstacle polygons. The algorithm is based on an efficient implementation of wavefront propagation among polygonal obstacles, and it actually computes a planar map encoding shortest paths from a fixed source point to all other points of the plane; the map can be used to answer
Finding the k Shortest Paths
, 1997
"... We give algorithms for finding the k shortest paths (not required to be simple) connecting a pair of vertices in a digraph. Our algorithms output an implicit representation of these paths in a digraph with n vertices and m edges, in time O(m + n log n + k). We can also find the k shortest pat ..."
Abstract

Cited by 401 (2 self)
 Add to MetaCart
We give algorithms for finding the k shortest paths (not required to be simple) connecting a pair of vertices in a digraph. Our algorithms output an implicit representation of these paths in a digraph with n vertices and m edges, in time O(m + n log n + k). We can also find the k shortest
Abstract Efficient Computation of Euclidean Shortest Paths in the Plane
"... We propose a new algorithm for a classical problem in plane computational geometry: computing a shortest path between two points in the presence of polygonal obstacles. Our algorithm runs in worstcase time O(nlog2n) and requires O(n1ogn) space, where n is the total number of vertices in the obsta ..."
Abstract
 Add to MetaCart
We propose a new algorithm for a classical problem in plane computational geometry: computing a shortest path between two points in the presence of polygonal obstacles. Our algorithm runs in worstcase time O(nlog2n) and requires O(n1ogn) space, where n is the total number of vertices
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
An Efficient Boosting Algorithm for Combining Preferences
, 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract

Cited by 707 (18 self)
 Add to MetaCart
The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new
Probabilistic Roadmaps for Path Planning in HighDimensional Configuration Spaces
 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
, 1996
"... A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edg ..."
Abstract

Cited by 1276 (124 self)
 Add to MetaCart
to be relatively easy to choose, Increased efficiency can also be achieved by tailoring some components of the method (e.g., the local planner) to the considered robots. In this paper the method is applied to planar articulated robots with many degrees of freedom. Experimental results show that path planning can
L1 Shortest Path Queries among Polygonal Obstacles in the Plane
"... Given a point s and a set of h pairwise disjoint polygonal obstacles with a total of n vertices in the plane, after the free space is triangulated, we present an O(n + h log h) time and O(n) space algorithm for building a data structure (called shortest path map) of size O(n) such that for any query ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Given a point s and a set of h pairwise disjoint polygonal obstacles with a total of n vertices in the plane, after the free space is triangulated, we present an O(n + h log h) time and O(n) space algorithm for building a data structure (called shortest path map) of size O(n) such that for any
ReTiling Polygonal Surfaces
 Computer Graphics
, 1992
"... This paper presents an automatic method of creating surface models at several levels of detail from an original polygonal description of a given object. Representing models at various levels of detail is important for achieving high frame rates in interactive graphics applications and also for speed ..."
Abstract

Cited by 448 (3 self)
 Add to MetaCart
This paper presents an automatic method of creating surface models at several levels of detail from an original polygonal description of a given object. Representing models at various levels of detail is important for achieving high frame rates in interactive graphics applications and also
Results 1  10
of
99,298