Results 1  10
of
174,467
A strongly polynomial cut canceling algorithm for minimum cost submodular flow
 PROCEEDINGS OF THE SEVENTH MPS CONFERENCE ON INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION
, 1993
"... This paper presents a new strongly polynomial cut canceling algorithm for minimum cost submodular flow. The algorithm is a generalization of our similar cut canceling algorithm for ordinary mincost flow. The algorithm scales a relaxed optimality parameter, and creates a second, inner relaxation tha ..."
Abstract

Cited by 25 (17 self)
 Add to MetaCart
This paper presents a new strongly polynomial cut canceling algorithm for minimum cost submodular flow. The algorithm is a generalization of our similar cut canceling algorithm for ordinary mincost flow. The algorithm scales a relaxed optimality parameter, and creates a second, inner relaxation
An Experimental Comparison of MinCut/MaxFlow Algorithms for Energy Minimization in Vision
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2001
"... After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in lowlevel vision. The combinatorial optimization literature provides many mincut/maxflow algorithms with different polynomial time compl ..."
Abstract

Cited by 1311 (54 self)
 Add to MetaCart
After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in lowlevel vision. The combinatorial optimization literature provides many mincut/maxflow algorithms with different polynomial time
Theoretical improvements in algorithmic efficiency for network flow problems

, 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract

Cited by 565 (0 self)
 Add to MetaCart
in the flow value then, provided the capacities are integral, a maximum flow will be determined within at most 1 + logM/(M1) if(t, S) augmentations, wheref*(t, s) is the value of the maximum flow and M is the maximum number of arcs across a cut. Next a new algorithm is given for the minimumcost flow
A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts
 In Proceedings of the ACL
, 2004
"... Sentiment analysis seeks to identify the viewpoint(s) underlying a text span; an example application is classifying a movie review as “thumbs up” or “thumbs down”. To determine this sentiment polarity, we propose a novel machinelearning method that applies textcategorization techniques to just the ..."
Abstract

Cited by 589 (7 self)
 Add to MetaCart
the subjective portions of the document. Extracting these portions can be implemented using efficient techniques for finding minimum cuts in graphs; this greatly facilitates incorporation of crosssentence contextual constraints. Publication info: Proceedings of the ACL, 2004. 1
"GrabCut”  interactive foreground extraction using iterated graph cuts
 ACM TRANS. GRAPH
, 2004
"... The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently ..."
Abstract

Cited by 1140 (36 self)
 Add to MetaCart
. Recently, an approach based on optimization by graphcut has been developed which successfully combines both types of information. In this paper we extend the graphcut approach in three respects. First, we have developed a more powerful, iterative version of the optimisation. Secondly, the power
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Fast cycle canceling algorithms for minimum cost submodular flow
 COMBINATORICA
, 2000
"... This paper presents two fast cycle canceling algorithms for the submodular flow problem. The first uses an assignment problem whose optimal solution identifies most negative nodedisjoint cycles in an auxiliary network. Canceling these cycles lexicographically makes it possible to obtain an optimal ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
canceling algorithm for min cost flow to submodular flow to also get a running time of O(n 4 h log(nC)). We show how to modify these algorithms to make them strongly polynomial, with running times of O(n^6 h log n), which matches the fastest strongly polynomial time bound for submodular flow. We also show
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can
The StructureMapping Engine: Algorithm and Examples
 Artificial Intelligence
, 1989
"... This paper describes the StructureMapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structuremapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its flexibili ..."
Abstract

Cited by 512 (115 self)
 Add to MetaCart
This paper describes the StructureMapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structuremapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its
Results 1  10
of
174,467