Results 1  10
of
584,864
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can
The geometry of graphs and some of its algorithmic applications
 Combinatorica
, 1995
"... In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graphtheoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that r ..."
Abstract

Cited by 543 (20 self)
 Add to MetaCart
In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graphtheoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations
Graphbased algorithms for Boolean function manipulation
 IEEE TRANSACTIONS ON COMPUTERS
, 1986
"... In this paper we present a new data structure for representing Boolean functions and an associated set of manipulation algorithms. Functions are represented by directed, acyclic graphs in a manner similar to the representations introduced by Lee [1] and Akers [2], but with further restrictions on th ..."
Abstract

Cited by 3499 (47 self)
 Add to MetaCart
on the ordering of decision variables in the graph. Although a function requires, in the worst case, a graph of size exponential in the number of arguments, many of the functions encountered in typical applications have a more reasonable representation. Our algorithms have time complexity proportional
Books in graphs
, 2008
"... A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α) ..."
Abstract

Cited by 2380 (22 self)
 Add to MetaCart
A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α
The FF planning system: Fast plan generation through heuristic search
 Journal of Artificial Intelligence Research
, 2001
"... We describe and evaluate the algorithmic techniques that are used in the FF planning system. Like the HSP system, FF relies on forward state space search, using a heuristic that estimates goal distances by ignoring delete lists. Unlike HSP's heuristic, our method does not assume facts to be ind ..."
Abstract

Cited by 822 (53 self)
 Add to MetaCart
We describe and evaluate the algorithmic techniques that are used in the FF planning system. Like the HSP system, FF relies on forward state space search, using a heuristic that estimates goal distances by ignoring delete lists. Unlike HSP's heuristic, our method does not assume facts
Estimating the number of clusters in a dataset via the Gap statistic
, 2000
"... We propose a method (the \Gap statistic") for estimating the number of clusters (groups) in a set of data. The technique uses the output of any clustering algorithm (e.g. kmeans or hierarchical), comparing the change in within cluster dispersion to that expected under an appropriate reference ..."
Abstract

Cited by 492 (1 self)
 Add to MetaCart
We propose a method (the \Gap statistic") for estimating the number of clusters (groups) in a set of data. The technique uses the output of any clustering algorithm (e.g. kmeans or hierarchical), comparing the change in within cluster dispersion to that expected under an appropriate reference
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Randomized Algorithms
, 1995
"... Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available, or the simp ..."
Abstract

Cited by 2210 (37 self)
 Add to MetaCart
Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available
Similarity Flooding: A Versatile Graph Matching Algorithm and Its Application to Schema Matching
, 2002
"... Matching elements of two data schemas or two data instances plays a key role in data warehousing, ebusiness, or even biochemical applications. In this paper we present a matching algorithm based on a fixpoint computation that is usable across different scenarios. The algorithm takes two graphs (sch ..."
Abstract

Cited by 575 (12 self)
 Add to MetaCart
matter of fact, we evaluate the ‘accuracy ’ of the algorithm by counting the number of needed adjustments. We conducted a user study, in which our accuracy metric was used to estimate the labor savings that the users could obtain by utilizing our algorithm to obtain an initial matching. Finally, we
Results 1  10
of
584,864