• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 15,908
Next 10 →

Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression

by John G. Daugman , 1988
"... A three-layered neural network is described for transforming two-dimensional discrete signals into generalized nonorthogonal 2-D “Gabor” representations for image analysis, segmentation, and compression. These transforms are conjoint spatial/spectral representations [lo], [15], which provide a comp ..."
Abstract - Cited by 478 (8 self) - Add to MetaCart
A three-layered neural network is described for transforming two-dimensional discrete signals into generalized nonorthogonal 2-D “Gabor” representations for image analysis, segmentation, and compression. These transforms are conjoint spatial/spectral representations [lo], [15], which provide a

An evaluation of statistical approaches to text categorization

by Yiming Yang - Journal of Information Retrieval , 1999
"... Abstract. This paper focuses on a comparative evaluation of a wide-range of text categorization methods, including previously published results on the Reuters corpus and new results of additional experiments. A controlled study using three classifiers, kNN, LLSF and WORD, was conducted to examine th ..."
Abstract - Cited by 663 (22 self) - Add to MetaCart
were used as baselines, since they were evaluated on all versions of Reuters that exclude the unlabelled documents. As a global observation, kNN, LLSF and a neural network method had the best performance; except for a Naive Bayes approach, the other learning algorithms also performed relatively well.

Kerberos: An Authentication Service for Open Network Systems

by Jennifer G. Steiner, Clifford Neuman, Jeffrey I. Schiller - IN USENIX CONFERENCE PROCEEDINGS , 1988
"... In an open network computing environment, a workstation cannot be trusted to identify its users correctly to network services. Kerberos provides an alternative approach whereby a trusted third-party authentication service is used to verify users’ identities. This paper gives an overview of the Kerb ..."
Abstract - Cited by 687 (12 self) - Add to MetaCart
In an open network computing environment, a workstation cannot be trusted to identify its users correctly to network services. Kerberos provides an alternative approach whereby a trusted third-party authentication service is used to verify users’ identities. This paper gives an overview

A new learning algorithm for blind signal separation

by S. Amari, A. Cichocki, H. H. Yang - , 1996
"... A new on-line learning algorithm which minimizes a statistical de-pendency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual in-formation (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of ..."
Abstract - Cited by 622 (80 self) - Add to MetaCart
of the sources. The Gram-Charlier expansion instead of the Edgeworth expansion is used in evaluating the MI. The natural gradient approach is used to minimize the MI. A novel activation function is proposed for the on-line learning algorithm which has an equivariant property and is easily implemented on a neural

A Re-Examination of Text Categorization Methods

by Yiming Yang, Xin Liu , 1999
"... This paper reports a controlled study with statistical significance tests on five text categorization methods: the Support Vector Machines (SVM), a k-Nearest Neighbor (kNN) classifier, a neural network (NNet) approach, the Linear Leastsquares Fit (LLSF) mapping and a NaiveBayes (NB) classifier. We f ..."
Abstract - Cited by 853 (24 self) - Add to MetaCart
This paper reports a controlled study with statistical significance tests on five text categorization methods: the Support Vector Machines (SVM), a k-Nearest Neighbor (kNN) classifier, a neural network (NNet) approach, the Linear Leastsquares Fit (LLSF) mapping and a NaiveBayes (NB) classifier. We

Statistical pattern recognition: A review

by Anil K. Jain, Robert P. W. Duin, Jianchang Mao - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2000
"... The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques ..."
Abstract - Cited by 1035 (30 self) - Add to MetaCart
The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network

TABU SEARCH

by Fred Glover, Rafael Marti
"... Tabu Search is a metaheuristic that guides a local heuristic search procedure to explore the solution space beyond local optimality. One of the main components of tabu search is its use of adaptive memory, which creates a more flexible search behavior. Memory based strategies are therefore the hallm ..."
Abstract - Cited by 822 (48 self) - Add to MetaCart
the hallmark of tabu search approaches, founded on a quest for "integrating principles, " by which alternative forms of memory are appropriately combined with effective strategies for exploiting them. In this chapter we address the problem of training multilayer feed-forward neural networks

A Neural Probabilistic Language Model

by Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin - JOURNAL OF MACHINE LEARNING RESEARCH , 2003
"... A goal of statistical language modeling is to learn the joint probability function of sequences of words in a language. This is intrinsically difficult because of the curse of dimensionality: a word sequence on which the model will be tested is likely to be different from all the word sequences seen ..."
Abstract - Cited by 447 (19 self) - Add to MetaCart
is itself a significant challenge. We report on experiments using neural networks for the probability function, showing on two text corpora that the proposed approach significantly improves on state-of-the-art n-gram models, and that the proposed approach allows to take advantage of longer contexts.

Probabilistic Inference Using Markov Chain Monte Carlo Methods

by Radford M. Neal , 1993
"... Probabilistic inference is an attractive approach to uncertain reasoning and empirical learning in artificial intelligence. Computational difficulties arise, however, because probabilistic models with the necessary realism and flexibility lead to complex distributions over high-dimensional spaces. R ..."
Abstract - Cited by 736 (24 self) - Add to MetaCart
from data, and Bayesian learning for neural networks.

Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations

by Wolfgang Maass, Thomas Natschläger, Henry Markram
"... A key challenge for neural modeling is to explain how a continuous stream of multi-modal input from a rapidly changing environment can be processed by stereotypical recurrent circuits of integrate-and-fire neurons in real-time. We propose a new computational model for real-time computing on time-var ..."
Abstract - Cited by 469 (38 self) - Add to MetaCart
-varying input that provides an alternative to paradigms based on Turing machines or attractor neural networks. It does not require a task-dependent construction of neural circuits. Instead it is based on principles of high dimensional dynamical systems in combination with statistical learning theory, and can
Next 10 →
Results 1 - 10 of 15,908
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2016 The Pennsylvania State University