Results 1  10
of
705,600
SeibergWitten prepotential from instanton counting
, 2002
"... In my lecture I consider integrals over moduli spaces of supersymmetric gauge field configurations (instantons, Higgs bundles, torsion free sheaves). The applications are twofold: physical and mathematical; they involve supersymmetric quantum mechanics of Dparticles in various dimensions, direct co ..."
Abstract

Cited by 496 (9 self)
 Add to MetaCart
In my lecture I consider integrals over moduli spaces of supersymmetric gauge field configurations (instantons, Higgs bundles, torsion free sheaves). The applications are twofold: physical and mathematical; they involve supersymmetric quantum mechanics of Dparticles in various dimensions, direct
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
 SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract

Cited by 2046 (40 self)
 Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered
Dynamic Itemset Counting and Implication Rules for Market Basket Data
, 1997
"... We consider the problem of analyzing marketbasket data and present several important contributions. First, we present a new algorithm for finding large itemsets which uses fewer passes over the data than classic algorithms, and yet uses fewer candidate itemsets than methods based on sampling. We in ..."
Abstract

Cited by 599 (6 self)
 Add to MetaCart
We consider the problem of analyzing marketbasket data and present several important contributions. First, we present a new algorithm for finding large itemsets which uses fewer passes over the data than classic algorithms, and yet uses fewer candidate itemsets than methods based on sampling. We
Usability Analysis of Visual Programming Environments: a `cognitive dimensions' framework
 JOURNAL OF VISUAL LANGUAGES AND COMPUTING
, 1996
"... The cognitive dimensions framework is a broadbrush evaluation technique for interactive devices and for noninteractive notations. It sets out a small vocabulary of terms designed to capture the cognitivelyrelevant aspects of structure, and shows how they can be traded off against each other. T ..."
Abstract

Cited by 510 (13 self)
 Add to MetaCart
The cognitive dimensions framework is a broadbrush evaluation technique for interactive devices and for noninteractive notations. It sets out a small vocabulary of terms designed to capture the cognitivelyrelevant aspects of structure, and shows how they can be traded off against each other
The empirical case for two systems of reasoning
, 1996
"... Distinctions have been proposed between systems of reasoning for centuries. This article distills properties shared by many of these distinctions and characterizes the resulting systems in light of recent findings and theoretical developments. One system is associative because its computations ref ..."
Abstract

Cited by 631 (4 self)
 Add to MetaCart
and can simultaneously generate different solutions to a reasoning problem. The rulebased system can suppress the associative system but not completely inhibit it. The article reviews evidence in favor of the distinction and its characterization.
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
that for large n, and for all Φ’s except a negligible fraction, the following property holds: For every y having a representation y = Φα0 by a coefficient vector α0 ∈ R m with fewer than ρ · n nonzeros, the solution α1 of the ℓ 1 minimization problem min �x�1 subject to Φα = y is unique and equal to α0
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
particular realization of the N = 2 theories, the resulting string field theory is equivalent to a topological theory in six dimensions, the Kodaira– Spencer theory, which may be viewed as the closed string analog of the Chern–Simon theory. Using the mirror map this leads to computation of the ‘number
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1848 (44 self)
 Add to MetaCart
is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leaveoneout method and the VCdimension
A Survey of active network Research
 IEEE Communications
, 1997
"... Active networks are a novel approach to network architecture in which the switches of the network perform customized computations on the messages flowing through them. This approach is motivated by both lead user applications, which perform userdriven computation at nodes within the network today, ..."
Abstract

Cited by 542 (29 self)
 Add to MetaCart
, and the emergence of mobile code technologies that make dynamic network service innovation attainable. In this paper, we discuss two approaches to the realization of active networks and provide a snapshot of the current research issues and activities. Introduction – What Are Active Networks? In an active network
String theory and noncommutative geometry
 JHEP
, 1999
"... We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from ..."
Abstract

Cited by 801 (8 self)
 Add to MetaCart
We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from
Results 1  10
of
705,600