Results 1  10
of
396,447
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2000
"... We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a marginbased binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class ..."
Abstract

Cited by 560 (20 self)
 Add to MetaCart
We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a marginbased binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class
Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties
 J. Alg. Geom
, 1994
"... We consider families F(∆) consisting of complex (n − 1)dimensional projective algebraic compactifications of ∆regular affine hypersurfaces Zf defined by Laurent polynomials f with a fixed ndimensional Newton polyhedron ∆ in ndimensional algebraic torus T = (C ∗ ) n. If the family F(∆) defined by ..."
Abstract

Cited by 467 (20 self)
 Add to MetaCart
that the properties of this duality coincide with the properties of Mirror Symmetry discovered by physicists for CalabiYau 3folds. Our method allows to construct many new examples of CalabiYau 3folds and new candidates for their mirrors which were previously unknown for physicists. We conjecture that there exists
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical
A Compositional Approach to Performance Modelling
, 1996
"... Performance modelling is concerned with the capture and analysis of the dynamic behaviour of computer and communication systems. The size and complexity of many modern systems result in large, complex models. A compositional approach decomposes the system into subsystems that are smaller and more ea ..."
Abstract

Cited by 746 (102 self)
 Add to MetaCart
Performance modelling is concerned with the capture and analysis of the dynamic behaviour of computer and communication systems. The size and complexity of many modern systems result in large, complex models. A compositional approach decomposes the system into subsystems that are smaller and more
The Transferable Belief Model
 ARTIFICIAL INTELLIGENCE
, 1994
"... We describe the transferable belief model, a model for representing quantified beliefs based on belief functions. Beliefs can be held at two levels: (1) a credal level where beliefs are entertained and quantified by belief functions, (2) a pignistic level where beliefs can be used to make decisions ..."
Abstract

Cited by 486 (15 self)
 Add to MetaCart
We describe the transferable belief model, a model for representing quantified beliefs based on belief functions. Beliefs can be held at two levels: (1) a credal level where beliefs are entertained and quantified by belief functions, (2) a pignistic level where beliefs can be used to make decisions
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
 Biometrika
, 1995
"... Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determi ..."
Abstract

Cited by 1330 (24 self)
 Add to MetaCart
Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model
Orthonormal bases of compactly supported wavelets
, 1993
"... Several variations are given on the construction of orthonormal bases of wavelets with compact support. They have, respectively, more symmetry, more regularity, or more vanishing moments for the scaling function than the examples constructed in Daubechies [Comm. Pure Appl. Math., 41 (1988), pp. 90 ..."
Abstract

Cited by 2182 (27 self)
 Add to MetaCart
Several variations are given on the construction of orthonormal bases of wavelets with compact support. They have, respectively, more symmetry, more regularity, or more vanishing moments for the scaling function than the examples constructed in Daubechies [Comm. Pure Appl. Math., 41 (1988), pp
Hierarchies from Fluxes in String Compactifications
, 2002
"... Warped compactifications with significant warping provide one of the few known mechanisms for naturally generating large hierarchies of physical scales. We demonstrate that this mechanism is realizable in string theory, and give examples involving orientifold compactifications of IIB string theory a ..."
Abstract

Cited by 724 (33 self)
 Add to MetaCart
, and the hierarchy reflects the small scale of chiral symmetry breaking in the dual gauge theory.
Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models
 Journal of Business and Economic Statistics
, 2002
"... Time varying correlations are often estimated with Multivariate Garch models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation (DCC) models is proposed. These have the flexibility of univariate GARCH models coupled wi ..."
Abstract

Cited by 684 (17 self)
 Add to MetaCart
Time varying correlations are often estimated with Multivariate Garch models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation (DCC) models is proposed. These have the flexibility of univariate GARCH models coupled
Results 1  10
of
396,447