Results 1  10
of
165,581
The Encyclopedia of Integer Sequences
"... This article gives a brief introduction to the OnLine Encyclopedia of Integer Sequences (or OEIS). The OEIS is a database of nearly 90,000 sequences of integers, arranged lexicographically. The entry for a sequence lists the initial terms (50 to 100, if available), a description, formulae, programs ..."
Abstract

Cited by 879 (15 self)
 Add to MetaCart
This article gives a brief introduction to the OnLine Encyclopedia of Integer Sequences (or OEIS). The OEIS is a database of nearly 90,000 sequences of integers, arranged lexicographically. The entry for a sequence lists the initial terms (50 to 100, if available), a description, formulae, programs to generate the sequence, references, links to relevant web pages, and other
Literate programming
 THE COMPUTER JOURNAL
, 1984
"... The author and his associates have been experimenting for the past several years with a programming language and documentation system called WEB. This paper presents WEB by example, and discusses why the new system appears to be an improvement over previous ones. ..."
Abstract

Cited by 549 (3 self)
 Add to MetaCart
The author and his associates have been experimenting for the past several years with a programming language and documentation system called WEB. This paper presents WEB by example, and discusses why the new system appears to be an improvement over previous ones.
On the distribution of the length of the longest increasing subsequence of random permutations
 J. Amer. Math. Soc
, 1999
"... Let SN be the group of permutations of 1, 2,...,N. If π ∈ SN,wesaythat π(i1),...,π(ik) is an increasing subsequence in π if i1 <i2 <·· · <ikand π(i1) < π(i2) < ···<π(ik). Let lN (π) be the length of the longest increasing subsequence. For example, if N =5andπis the permutation 5 1 ..."
Abstract

Cited by 512 (32 self)
 Add to MetaCart
Let SN be the group of permutations of 1, 2,...,N. If π ∈ SN,wesaythat π(i1),...,π(ik) is an increasing subsequence in π if i1 <i2 <·· · <ikand π(i1) < π(i2) < ···<π(ik). Let lN (π) be the length of the longest increasing subsequence. For example, if N =5andπis the permutation 5 1 3 2 4 (in oneline notation:
An experimental comparison of three methods for constructing ensembles of decision trees
 Bagging, boosting, and randomization. Machine Learning
, 2000
"... Abstract. Bagging and boosting are methods that generate a diverse ensemble of classifiers by manipulating the training data given to a “base ” learning algorithm. Breiman has pointed out that they rely for their effectiveness on the instability of the base learning algorithm. An alternative approac ..."
Abstract

Cited by 605 (6 self)
 Add to MetaCart
Abstract. Bagging and boosting are methods that generate a diverse ensemble of classifiers by manipulating the training data given to a “base ” learning algorithm. Breiman has pointed out that they rely for their effectiveness on the instability of the base learning algorithm. An alternative approach to generating an ensemble is to randomize the internal decisions made by the base algorithm. This general approach has been studied previously by Ali and Pazzani and by Dietterich and Kong. This paper compares the effectiveness of randomization, bagging, and boosting for improving the performance of the decisiontree algorithm C4.5. The experiments show that in situations with little or no classification noise, randomization is competitive with (and perhaps slightly superior to) bagging but not as accurate as boosting. In situations with substantial classification noise, bagging is much better than boosting, and sometimes better than randomization.
The Viterbi algorithm
 Proceedings of the IEEE
, 1973
"... vol. 6, no. 8, pp. 211220, 1951. [7] J. L. Anderson and J. W..Ryon, “Electromagnetic radiation in accelerated systems, ” Phys. Rev., vol. 181, pp. 17651775, 1969. [8] C. V. Heer, “Resonant frequencies of an electromagnetic cavity in an accelerated system of reference, ” Phys. Reu., vol. 134, pp. A ..."
Abstract

Cited by 987 (3 self)
 Add to MetaCart
vol. 6, no. 8, pp. 211220, 1951. [7] J. L. Anderson and J. W..Ryon, “Electromagnetic radiation in accelerated systems, ” Phys. Rev., vol. 181, pp. 17651775, 1969. [8] C. V. Heer, “Resonant frequencies of an electromagnetic cavity in an accelerated system of reference, ” Phys. Reu., vol. 134, pp. A799A804, 1964. [9] T. C. Mo, “Theory of electrodynamics in media in noninertial frames and applications, ” J. Math. Phys., vol. 11, pp. 25892610, 1970.
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 898 (35 self)
 Add to MetaCart
. In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variation in the perturbed quantity. Up to the higherorder terms that are ignored in the expansion, these statistics tend to be more realistic than perturbation bounds obtained in terms of norms. The technique is applied to a number of problems in matrix perturbation theory, including least squares and the eigenvalue problem. Key words. perturbation theory, random matrix, linear system, least squares, eigenvalue, eigenvector, invariant subspace, singular value AMS(MOS) subject classifications. 15A06, 15A12, 15A18, 15A52, 15A60 1. Introduction. Let A be a matrix and let F be a matrix valued function of A. Two principal problems of matrix perturbation theory are the following. Given a matrix E, pr...
Random forests
 Machine Learning
, 2001
"... Abstract. Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the fo ..."
Abstract

Cited by 3436 (2 self)
 Add to MetaCart
Abstract. Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, ∗∗∗, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.
RCV1: A new benchmark collection for text categorization research
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2004
"... Reuters Corpus Volume I (RCV1) is an archive of over 800,000 manually categorized newswire stories recently made available by Reuters, Ltd. for research purposes. Use of this data for research on text categorization requires a detailed understanding of the real world constraints under which the data ..."
Abstract

Cited by 649 (11 self)
 Add to MetaCart
Reuters Corpus Volume I (RCV1) is an archive of over 800,000 manually categorized newswire stories recently made available by Reuters, Ltd. for research purposes. Use of this data for research on text categorization requires a detailed understanding of the real world constraints under which the data was produced. Drawing on interviews with Reuters personnel and access to Reuters documentation, we describe the coding policy and quality control procedures used in producing the RCV1 data, the intended semantics of the hierarchical category taxonomies, and the corrections necessary to remove errorful data. We refer to the original data as RCV1v1, and the corrected data as RCV1v2. We benchmark several widely used supervised learning methods on RCV1v2, illustrating the collection’s properties, suggesting new directions for research, and providing baseline results for future studies. We make available detailed, percategory experimental results, as well as
An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
 MACHINE LEARNING
, 1999
"... Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and realworld datasets. We review these algorithms and describe a large empirical study comparing several variants in co ..."
Abstract

Cited by 698 (2 self)
 Add to MetaCart
Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and realworld datasets. We review these algorithms and describe a large empirical study comparing several variants in conjunction with a decision tree inducer (three variants) and a NaiveBayes inducer.
The purpose of the study is to improve our understanding of why and
when these algorithms, which use perturbation, reweighting, and
combination techniques, affect classification error. We provide a
bias and variance decomposition of the error to show how different
methods and variants influence these two terms. This allowed us to
determine that Bagging reduced variance of unstable methods, while
boosting methods (AdaBoost and Arcx4) reduced both the bias and
variance of unstable methods but increased the variance for NaiveBayes,
which was very stable. We observed that Arcx4 behaves differently
than AdaBoost if reweighting is used instead of resampling,
indicating a fundamental difference. Voting variants, some of which
are introduced in this paper, include: pruning versus no pruning,
use of probabilistic estimates, weight perturbations (Wagging), and
backfitting of data. We found that Bagging improves when
probabilistic estimates in conjunction with nopruning are used, as
well as when the data was backfit. We measure tree sizes and show
an interesting positive correlation between the increase in the
average tree size in AdaBoost trials and its success in reducing the
error. We compare the meansquared error of voting methods to
nonvoting methods and show that the voting methods lead to large
and significant reductions in the meansquared errors. Practical
problems that arise in implementing boosting algorithms are
explored, including numerical instabilities and underflows. We use
scatterplots that graphically show how AdaBoost reweights instances,
emphasizing not only "hard" areas but also outliers and noise.
Handbook of Applied Cryptography
, 1997
"... As we draw near to closing out the twentieth century, we see quite clearly that the informationprocessing and telecommunications revolutions now underway will continue vigorously into the twentyfirst. We interact and transact by directing flocks of digital packets towards each other through cybers ..."
Abstract

Cited by 3280 (33 self)
 Add to MetaCart
As we draw near to closing out the twentieth century, we see quite clearly that the informationprocessing and telecommunications revolutions now underway will continue vigorously into the twentyfirst. We interact and transact by directing flocks of digital packets towards each other through cyberspace, carrying love notes, digital cash, and secret corporate documents. Our personal and economic lives rely more and more on our ability to let such ethereal carrier pigeons mediate at a distance what we used to do with facetoface meetings, paper documents, and a firm handshake. Unfortunately, the technical wizardry enabling remote collaborations is founded on broadcasting everything as sequences of zeros and ones that one's own dog wouldn't recognize. What is to distinguish a digital dollar when it is as easily reproducible as the spoken word? How do we converse privately when every syllable is bounced off a satellite and smeared over an entire continent? How should a bank know that it really is Bill Gates requesting from his laptop in Fiji a transfer of $10,000,000,000 to another bank? Fortunately, the magical mathematics of cryptography can help. Cryptography provides techniques for keeping information secret, for determining that information
Results 1  10
of
165,581