Results 1  10
of
800
Improved Algorithms via Approximations of Probability Distributions
 Journal of Computer and System Sciences
, 1997
"... We present two techniques for approximating probability distributions. The first is a simple method for constructing the smallbias probability spaces introduced by Naor & Naor. We show how to efficiently combine this construction with the method of conditional probabilities to yield improved NC ..."
Abstract

Cited by 25 (4 self)
 Add to MetaCart
We present two techniques for approximating probability distributions. The first is a simple method for constructing the smallbias probability spaces introduced by Naor & Naor. We show how to efficiently combine this construction with the method of conditional probabilities to yield improved
Fixing MaxProduct: Convergent Message Passing Algorithms for MAP LPRelaxations
"... We present a novel message passing algorithm for approximating the MAP problem in graphical models. The algorithm is similar in structure to maxproduct but unlike maxproduct it always converges, and can be proven to find the exact MAP solution in various settings. The algorithm is derived via bloc ..."
Abstract

Cited by 160 (14 self)
 Add to MetaCart
We present a novel message passing algorithm for approximating the MAP problem in graphical models. The algorithm is similar in structure to maxproduct but unlike maxproduct it always converges, and can be proven to find the exact MAP solution in various settings. The algorithm is derived via
Boosted sampling: Approximation algorithms for stochastic optimization problems
 IN: 36TH STOC
, 2004
"... Several combinatorial optimization problems choose elements to minimize the total cost of constructing a feasible solution that satisfies requirements of clients. In the STEINER TREE problem, for example, edges must be chosen to connect terminals (clients); in VERTEX COVER, vertices must be chosen t ..."
Abstract

Cited by 98 (23 self)
 Add to MetaCart
factor of σ> 1. The goal is to minimize the first stage cost plus the expected second stage cost. We give a general yet simple technique to adapt approximation algorithms for several deterministic problems to their stochastic versions via the following method. • First stage: Draw σ independent sets
Optimal Approximation for the Submodular Welfare Problem in the value oracle model
 STOC'08
, 2008
"... In the Submodular Welfare Problem, m items are to be distributed among n players with utility functions wi: 2 [m] → R+. The utility functions are assumed to be monotone and submodular. Assuming that player i receives a set of items Si, we wish to maximize the total utility Pn i=1 wi(Si). In this pap ..."
Abstract

Cited by 123 (13 self)
 Add to MetaCart
], a (1 − 1/e)approximation has been achieved and this is optimal for these problems in the value oracle model [22, 6, 15]. A (1 − 1/e)approximation for the general Submodular Welfare Problem has been known only in a stronger demand oracle model [4], where in fact 1 − 1/e can be improved [9
An Interruptible Algorithm for Perfect Sampling via Markov Chains
 Annals of Applied Probability
, 1998
"... For a large class of examples arising in statistical physics known as attractive spin systems (e.g., the Ising model), one seeks to sample from a probability distribution # on an enormously large state space, but elementary sampling is ruled out by the infeasibility of calculating an appropriate nor ..."
Abstract

Cited by 94 (7 self)
 Add to MetaCart
For a large class of examples arising in statistical physics known as attractive spin systems (e.g., the Ising model), one seeks to sample from a probability distribution # on an enormously large state space, but elementary sampling is ruled out by the infeasibility of calculating an appropriate
Truthful and NearOptimal Mechanism Design via Linear Programming
"... We give a general technique to obtain approximation mechanisms that are truthful in expectation.We show that for packing domains, any ffapproximation algorithm that also bounds the integrality gapof the LP relaxation of the problem by ff can be used to construct an ffapproximation mechanismthat is ..."
Abstract

Cited by 134 (12 self)
 Add to MetaCart
We give a general technique to obtain approximation mechanisms that are truthful in expectation.We show that for packing domains, any ffapproximation algorithm that also bounds the integrality gapof the LP relaxation of the problem by ff can be used to construct an ffapproximation mechanismthat
Sampling from large matrices: an approach through geometric functional analysis
 Journal of the ACM
, 2006
"... Abstract. We study random submatrices of a large matrix A. We show how to approximately compute A from its random submatrix of the smallest possible size O(r log r) with a small error in the spectral norm, where r = �A�2 F /�A�22 is the numerical rank of A. The numerical rank is always bounded by, a ..."
Abstract

Cited by 132 (5 self)
 Add to MetaCart
slight improvement on the best known sample complexity for an approximation algorithm for MAX2CSP problems. We use methods of Probability in Banach spaces, in particular the law of large numbers for operatorvalued random variables. 1.
A fast randomized algorithm for the approximation of matrices
, 2007
"... We introduce a randomized procedure that, given an m×n matrix A and a positive integer k, approximates A with a matrix Z of rank k. The algorithm relies on applying a structured l × m random matrix R to each column of A, where l is an integer near to, but greater than, k. The structure of R allows u ..."
Abstract

Cited by 63 (7 self)
 Add to MetaCart
We introduce a randomized procedure that, given an m×n matrix A and a positive integer k, approximates A with a matrix Z of rank k. The algorithm relies on applying a structured l × m random matrix R to each column of A, where l is an integer near to, but greater than, k. The structure of R allows
Approximate Classification via Earthmover Metrics
 In SODA ’04: Proceedings of the fifteenth annual ACMSIAM symposium on Discrete algorithms
, 2004
"... Given a metric space (X, d), a natural distance measure on probability distributions over X is the earthmover metric. We use randomized rounding of earthmover metrics to devise new approximation algorithms for two wellknown classification problems, namely, metric labeling and 0extension. ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
Given a metric space (X, d), a natural distance measure on probability distributions over X is the earthmover metric. We use randomized rounding of earthmover metrics to devise new approximation algorithms for two wellknown classification problems, namely, metric labeling and 0extension.
Improving the Mean Field Approximation via the Use of Mixture Distributions
, 1998
"... Introduction Graphical models provide a formalism in which to express and manipulate conditional independence statements. Inference algorithms for graphical models exploit these independence statements, using them to compute conditional probabilities while avoiding brute force marginalization over ..."
Abstract

Cited by 50 (1 self)
 Add to MetaCart
Introduction Graphical models provide a formalism in which to express and manipulate conditional independence statements. Inference algorithms for graphical models exploit these independence statements, using them to compute conditional probabilities while avoiding brute force marginalization over
Results 1  10
of
800