Results 1  10
of
211,713
Domain Theory
 Handbook of Logic in Computer Science
, 1994
"... Least fixpoints as meanings of recursive definitions. ..."
Abstract

Cited by 546 (25 self)
 Add to MetaCart
Least fixpoints as meanings of recursive definitions.
Symbolic Model Checking for Realtime Systems
 INFORMATION AND COMPUTATION
, 1992
"... We describe finitestate programs over realnumbered time in a guardedcommand language with realvalued clocks or, equivalently, as finite automata with realvalued clocks. Model checking answers the question which states of a realtime program satisfy a branchingtime specification (given in an ..."
Abstract

Cited by 574 (50 self)
 Add to MetaCart
in an extension of CTL with clock variables). We develop an algorithm that computes this set of states symbolically as a fixpoint of a functional on state predicates, without constructing the state space. For this purpose, we introduce a calculus on computation trees over realnumbered time. Unfortunately
Fast Strictness Analysis Via Symbolic Fixpoint Iteration
, 1991
"... . Strictness analysis (at least for flat domains) is well understood. For a few years the main concern was efficiency, since the standard analysis was shown to be exponential in the worst case [9]. Thus lots of research evolved to find efficient averagecase algorithms. In Yale Haskell we have imple ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
implemented a strictness analyzer that computes fixpoints via symbolic manipulation of boolean functions. This extremely simple approach also is extremely fast  the strictness analysis phase of our compiler typically takes about 1% of the overall compilation time. 1 Introduction The goal of strictness
Interprocedural dataflow analysis via graph reachability
, 1994
"... The paper shows how a large class of interprocedural dataflowanalysis problems can be solved precisely in polynomial time by transforming them into a special kind of graphreachability problem. The only restrictions are that the set of dataflow facts must be a finite set, and that the dataflow fun ..."
Abstract

Cited by 454 (34 self)
 Add to MetaCart
The paper shows how a large class of interprocedural dataflowanalysis problems can be solved precisely in polynomial time by transforming them into a special kind of graphreachability problem. The only restrictions are that the set of dataflow facts must be a finite set, and that the dataflow
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a
On Spectral Clustering: Analysis and an algorithm
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2001
"... Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly ..."
Abstract

Cited by 1697 (13 self)
 Add to MetaCart
Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly different ways. Second, many of these algorithms have no proof that they will actually compute a reasonable clustering. In this paper, we present a simple spectral clustering algorithm that can be implemented using a few lines of Matlab. Using tools from matrix perturbation theory, we analyze the algorithm, and give conditions under which it can be expected to do well. We also show surprisingly good experimental results on a number of challenging clustering problems.
A Comparative Analysis of Methodologies for Database Schema Integration
 ACM COMPUTING SURVEYS
, 1986
"... One of the fundamental principles of the database approach is that a database allows a nonredundant, unified representation of all data managed in an organization. This is achieved only when methodologies are available to support integration across organizational and application boundaries.
Metho ..."
Abstract

Cited by 642 (10 self)
 Add to MetaCart
schema. The aim of the paper is to provide first a unifying framework for the problem of schema integration, then a comparative review of the work done thus far in this area. Such a framework, with the associated analysis of the existing approaches, provides a basis for identifying strengths
Counterexampleguided Abstraction Refinement
, 2000
"... We present an automatic iterative abstractionrefinement methodology in which the initial abstract model is generated by an automatic analysis of the control structures in the program to be verified. Abstract models may admit erroneous (or "spurious") counterexamples. We devise new symb ..."
Abstract

Cited by 848 (71 self)
 Add to MetaCart
We present an automatic iterative abstractionrefinement methodology in which the initial abstract model is generated by an automatic analysis of the control structures in the program to be verified. Abstract models may admit erroneous (or "spurious") counterexamples. We devise new
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1554 (85 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
On Bayesian analysis of mixtures with an unknown number of components
 INSTITUTE OF INTERNATIONAL ECONOMICS PROJECT ON INTERNATIONAL COMPETITION POLICY,&QUOT; COM/DAFFE/CLP/TD(94)42
, 1997
"... ..."
Results 1  10
of
211,713