Results 1  10
of
286,282
Representation Theory of Artin Algebras
 Studies in Advanced Mathematics
, 1994
"... The representation theory of artin algebras, as we understand it today, is a relatively new area of mathematics, as most of the main developments have occurred ..."
Abstract

Cited by 657 (9 self)
 Add to MetaCart
The representation theory of artin algebras, as we understand it today, is a relatively new area of mathematics, as most of the main developments have occurred
Parallel Numerical Linear Algebra
, 1993
"... We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illust ..."
Abstract

Cited by 773 (26 self)
 Add to MetaCart
We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We
Ktheory for operator algebras
 Mathematical Sciences Research Institute Publications
, 1998
"... p. XII line5: since p. 12: I blew this simple formula: should be α = −〈ξ, η〉/〈η, η〉. p. 2 I.1.1.4: The RieszFischer Theorem is often stated this way today, but neither Riesz nor Fischer (who worked independently) phrased it in terms of completeness of the orthogonal system {e int}. If [a, b] is a ..."
Abstract

Cited by 562 (0 self)
 Add to MetaCart
p. XII line5: since p. 12: I blew this simple formula: should be α = −〈ξ, η〉/〈η, η〉. p. 2 I.1.1.4: The RieszFischer Theorem is often stated this way today, but neither Riesz nor Fischer (who worked independently) phrased it in terms of completeness of the orthogonal system {e int}. If [a, b] is a bounded interval in R, in modern language the original statement of the theorem was that L 2 ([a, b]) is complete and abstractly isomorphic to l 2. According to [Jah03, p. 385], the name “Hilbert space ” was first used in 1908 by A. Schönflies, apparently to refer to what we today call l 2. Von Neumann used the same name for Hilbert spaces in the modern sense (complete inner product spaces), which he defined in 1928. p. 3 line6: At the end of the line, 2ɛ should be 4ɛ. p. 3 I.1.2.3: The statement that a dense subspace of a Hilbert space H contains an orthonormal basis for H can be false if H is nonseparable. In fact, I. Farah (private communication) has shown that a Hilbert space of dimension 2ℵ0 has a dense subspace which does not contain any uncountable orthonormal set. A similar example was obtained by Dixmier [Dix53]. p. 89 I.2.4.3(i): Some of the statements on p. 9 can be false if the measure space is not σfinite. p. 13: add after I.2.6.16: I.2.6.17. If X is a compact subset of C not containing 0, and k ∈ N, there is in general no bound on the norm of T −1 as T ranges over all operators with ‖T ‖ ≤ k and σ(T) ⊆ X. For example, let Sn ∈ L(l 2) be the truncated shift: Sn(α1, α2,...) = (0, α1, α2,..., αn, 0, 0,...) and let Tn = I − Sn. ‖Sn ‖ = 1, so ‖Tn ‖ ≤ 2 for all n. Since Sn is nilpotent, σ(Sn) = {0}, so σ(Tn) = {1} for all n. Tn is invertible, with T −1 n = I + Sn + ξ1 ‖ = √ n + 1, so ‖T −1
ALGEBRAIC GEOMETRY
"... Algebraic geometry is the mathematical study of geometric objects by means of algebra. Its origins go back to the coordinate geometry introduced by Descartes. A classic example is the circle of radius 1 in the plane, which is ..."
Abstract

Cited by 523 (6 self)
 Add to MetaCart
Algebraic geometry is the mathematical study of geometric objects by means of algebra. Its origins go back to the coordinate geometry introduced by Descartes. A classic example is the circle of radius 1 in the plane, which is
Algebraic laws for nondeterminism and concurrency
 Journal of the ACM
, 1985
"... Abstract. Since a nondeterministic and concurrent program may, in general, communicate repeatedly with its environment, its meaning cannot be presented naturally as an input/output function (as is often done in the denotational approach to semantics). In this paper, an alternative is put forth. Firs ..."
Abstract

Cited by 602 (13 self)
 Add to MetaCart
observation congruence class. The paper demonstrates, for a sequence of simple languages expressing finite (terminating) behaviors, that in each case observation congruence can be axiomatized algebraically. Moreover, with the addition of recursion and another simple extension, the algebraic language described
The irreducibility of the space of curves of given genus
 Publ. Math. IHES
, 1969
"... Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k ~ ..."
Abstract

Cited by 522 (2 self)
 Add to MetaCart
Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k
The homogeneous coordinate ring of a toric variety
, 1992
"... This paper will introduce the homogeneous coordinate ring S of a toric variety X. The ring S is a polynomial ring with one variable for each onedimensional cone in the fan ∆ determining X, and S has a natural grading determined by the monoid of effective divisor classes in the Chow group An−1(X) of ..."
Abstract

Cited by 485 (7 self)
 Add to MetaCart
be constructed as the quotient (C n+1 −{0})/C ∗. In §2, we will see that there is a similar construction for any toric variety X. In this case, the algebraic group G = HomZ(An−1(X), C ∗ ) acts on an affine space C ∆(1) such that the categorical quotient (C ∆(1) − Z)/G exists and is isomorphic to X
The geometry of algorithms with orthogonality constraints
 SIAM J. MATRIX ANAL. APPL
, 1998
"... In this paper we develop new Newton and conjugate gradient algorithms on the Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures computations, and signal proces ..."
Abstract

Cited by 649 (1 self)
 Add to MetaCart
processing. In addition to the new algorithms, we show how the geometrical framework gives penetrating new insights allowing us to create, understand, and compare algorithms. The theory proposed here provides a taxonomy for numerical linear algebra algorithms that provide a top level mathematical view
A calculus of mobile processes, I
, 1992
"... We present the acalculus, a calculus of communicating systems in which one can naturally express processes which have changing structure. Not only may the component agents of a system be arbitrarily linked, but a communication between neighbours may carry information which changes that linkage. The ..."
Abstract

Cited by 1183 (31 self)
 Add to MetaCart
. The calculus is an extension of the process algebra CCS, following work by Engberg and Nielsen, who added mobility to CCS while preserving its algebraic properties. The rrcalculus gains simplicity by removing all distinction between variables and constants; communication links are identified by names
Results 1  10
of
286,282