Results 1  10
of
1,841,468
Speeding Up the Discrete Log Computation on Curves With Automorphisms
, 1999
"... We show how to speed up the discrete log computations on curves having automorphisms of large order, thus generalizing the attacks on ABC elliptic curves. This includes the first known attack on CM (hyper)elliptic curves, as well as most of the hyperelliptic curves described in the literature. ..."
Abstract

Cited by 39 (2 self)
 Add to MetaCart
We show how to speed up the discrete log computations on curves having automorphisms of large order, thus generalizing the attacks on ABC elliptic curves. This includes the first known attack on CM (hyper)elliptic curves, as well as most of the hyperelliptic curves described in the literature.
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number
LogP: Towards a Realistic Model of Parallel Computation
, 1993
"... A vast body of theoretical research has focused either on overly simplistic models of parallel computation, notably the PRAM, or overly specific models that have few representatives in the real world. Both kinds of models encourage exploitation of formal loopholes, rather than rewarding developme ..."
Abstract

Cited by 562 (15 self)
 Add to MetaCart
development of techniques that yield performance across a range of current and future parallel machines. This paper offers a new parallel machine model, called LogP, that reflects the critical technology trends underlying parallel computers. It is intended to serve as a basis for developing fast, portable
Parallel discrete event simulation
, 1990
"... Parallel discrete event simulation (PDES), sometimes I called distributed simulation, refers to the execution of a single discrete event simulation program on a parallel computer. PDES has attracted a considerable amount of interest in recent years. From a pragmatic standpoint, this interest arises ..."
Abstract

Cited by 816 (40 self)
 Add to MetaCart
Parallel discrete event simulation (PDES), sometimes I called distributed simulation, refers to the execution of a single discrete event simulation program on a parallel computer. PDES has attracted a considerable amount of interest in recent years. From a pragmatic standpoint, this interest arises
Mixed MNL Models for Discrete Response
 JOURNAL OF APPLIED ECONOMETRICS
, 2000
"... This paper considers mixed, or random coefficients, multinomial logit (MMNL) models for discrete response, and establishes the following results: Under mild regularity conditions, any discrete choice model derived from random utility maximization has choice probabilities that can be approximated as ..."
Abstract

Cited by 466 (14 self)
 Add to MetaCart
specification can be tested simply as an omitted variable test with appropriately defined artificial variables. An application to a problem of demand for alternative vehicles shows that MMNL provides a flexible and computationally practical approach to discrete response analysis.
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1268 (5 self)
 Add to MetaCart
. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical
The Protection of Information in Computer Systems
, 1975
"... This tutorial paper explores the mechanics of protecting computerstored information from unauthorized use or modification. It concentrates on those architectural structureswhether hardware or softwarethat are necessary to support information protection. The paper develops in three main sections ..."
Abstract

Cited by 815 (2 self)
 Add to MetaCart
This tutorial paper explores the mechanics of protecting computerstored information from unauthorized use or modification. It concentrates on those architectural structureswhether hardware or softwarethat are necessary to support information protection. The paper develops in three main
A public key cryptosystem and a signature scheme based on discrete logarithms
 Adv. in Cryptology, SpringerVerlag
, 1985
"... AbstractA new signature scheme is proposed, together with an implementation of the DiffieHellman key distribution scheme that achieves a public key cryptosystem. The security of both systems relies on the difficulty of computing discrete logarithms over finite fields. I. ..."
Abstract

Cited by 1520 (0 self)
 Add to MetaCart
AbstractA new signature scheme is proposed, together with an implementation of the DiffieHellman key distribution scheme that achieves a public key cryptosystem. The security of both systems relies on the difficulty of computing discrete logarithms over finite fields. I.
Results 1  10
of
1,841,468