• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 2,208
Next 10 →

Tableau 5 : Performance du solveur FGMRES(m) avec 1 it eration interne QMR sur le probl eme pr econditionn e SSOR

in unknown title
by unknown authors

Table 8: Erreur (di erence avec la valeur extr emale) sur la position de l apos;engin, en fonction du nombre d apos; el ements.

in Nffi d'ordre: TH `ESE
by Par Marc Joannides, Mme Dominique, Mm Fabien, Campillo Examinateurs, Gilbert Damy, Jean-charles Gilbert Fran, Cois Le Gland Etienne Pardoux

Table 5.18: Impact du nombre de stations de base potentielles sur le dimensionnement pour le profll de traflc 1 (60 sessions)

in DÉFINITION D’UN MODÈLE D’OPTIMISATION POUR LE
by Catherine Voisin, Université De Montréal, Dimensionnement De, Réseaux Troisième Génération, Présente Par Voisin Catherine, Membre M. Richard, Gourdeau Ph. D, Université De Montréal, Dimensionnement De, Réseaux Troisième Génération, Catherine Voisin, Département De, Génie Électrique, École Polytechnique De, Montréal Mémoire, Présenté En, Vue De, Diplôme De

Table 7 : Pourcentage de r eussite du contr^ole inductif en fonction de I et F. Probl eme trompeur, pression s elective de 1.2 4.4.4 Le probl eme du sac a dos Nous traitons maintenant un probl eme d apos;optimisation combinatoire, a n d apos; evaluer le comportement du couplage propos e hors du champ des probl emes arti ciels typiques des AGs. Les exp erimentations ont et e e ectu ees sur le probl eme dit du sac a dos multiple [35], et sur les donn ees de r ef erence propos ees par Petersen [48].

in Controlling Genetic Algorithms
by Michèle Sebag, Marc Schoenauer, Inductif Optimisation Hybride

Table 2. In uence du niveau de bruit additif sur F1b (moyenne sur 20 runs de 200000 evaluations). Les r esultats du bruit multiplicatif se r ev elent tr es d ecevants, et plafonnent a 2:27 dans les m^emes conditions. Le fait que les r esultats soient am elior es par un fort taux de bruit additif est a rapprocher du fait que l apos; evolution autonome obtenait les m^emes r esultats que l apos; evolution par inhibitions sur F1b.

in Evolution Mimétique
by M. Peyral, A. Ducoulombier, C. Ravisé, M. Schoenauer, M. Sebag
"... In PAGE 3: ...5 1 0.5 R(t+1) = (1 ? 0)Rt + 0dR Table2 : Individus et Individus virtuels Les individus virtuels fournissent par induction, des indications pour guider la mutation. Ainsi, d apos;apr es la base d apos;exemples X; Y; Z, et T, une cause possible de bonne performance etant bit1 = 1 ou bit2 = 1, on cherchera a muter ces bits dans X ; pratiquement, la strat egie consiste a se rapprocher de H, ou imiter le h eros.... In PAGE 3: ... La strat egie d apos; evolution des individus est alors d e nie par le couple ( H; R), d ecrivant son attitude face au h eros et au repoussoir. Nous avons donn e un nom aux di erentes strat egies possibles ( Table2 ) ; ainsi la strat egie imitant le h eros et fuyant le repoussoir est celle du Mouton ; celle qui consiste a fuir le repoussoir uniquement, (qui correspond a l apos; evolution par inhibitions), est celle du Peureux, etc.... ..."

Table XI. Overall average group correlation with juries

in SOFTWARE---PRACTICE AND EXPERIENCE. VOL. 22(8). 603--636 (AUGUST 1992) A Group Process for Defining Local Software Quality: Field Applications and Validation Experiments
by Carmen Trammell And, Carmen J. Trammell, J. H. Poore

Table 7: Jury Decision vs True State (Proportion incorrect decisions)

in An Experimental Study of Jury Decisions
by Richard D. McKelvey, Richard D. Mckelvey, Thomas R. Palfrey, Thomas R. Palfrey, Richard D. Mckelvey Thomas R 1998
"... In PAGE 16: ...17 Table 6: Probit analysis of nal vote in juries with straw poll (t statistics in parentheses) 4.3 Jury Accuracy Finally, in Table7 , we present the analysis of the accuracy of the nal decision of the jury as a function of the experimental treatment variables. We compare the actual data with the Nash equilibrium predictions of error rates, given in Table 1.... In PAGE 17: ... As evidence in support of the above claim, we have computed the expected jury accuracy under the QRE model. These are reported in Table7 (a). To compute these values, we used the maximum likelihood QRE estimates of (i) and (g) from Table 4, and substituted in to equations (1) and (2) to get values of gG and gI.... In PAGE 21: ... The unique uninformative equilibrium for the unanimity game has all voters always voting to acquit, independent of their actual signal. Table7 clearly shows that voting is in fact very informative in the unanimity games with and without straw polls. Thus we conclude that the data does not provide evidence of this kind of behavior.... ..."
Cited by 1

Table 4: QRE and NNM estimates for 3 and 6 person juries

in An Experimental Study of Jury Decisions
by Richard D. McKelvey, Richard D. Mckelvey, Thomas R. Palfrey, Thomas R. Palfrey, Richard D. Mckelvey Thomas R 1998
"... In PAGE 13: ... Recall that QRE assumes that the distribution of errors is common knowledge, so other subjects take account of the errors of other players (and assume others do likewise) in making their own choices (See McKelvey and Palfrey, 1995, 1998 for further discussion of these alternative models). Table4 gives the results of estimating both the Logit QRE and the NNM models. In addition, the aggregate choice frequencies from the non-deliberation data are superim- posed (large dots) in Figures 1 and 2.... ..."
Cited by 1

Table VII. Correlations between test groups and the jury for organization A

in SOFTWARE---PRACTICE AND EXPERIENCE. VOL. 22(8). 603--636 (AUGUST 1992) A Group Process for Defining Local Software Quality: Field Applications and Validation Experiments
by Carmen Trammell And, Carmen J. Trammell, J. H. Poore

Table VIII. Correlations between test groups and the jury for organization B

in SOFTWARE---PRACTICE AND EXPERIENCE. VOL. 22(8). 603--636 (AUGUST 1992) A Group Process for Defining Local Software Quality: Field Applications and Validation Experiments
by Carmen Trammell And, Carmen J. Trammell, J. H. Poore
Next 10 →
Results 1 - 10 of 2,208
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2016 The Pennsylvania State University